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ABSTRACT
Pairwise voting rules are a generalization of the standard
voting rules where instead of a ranked list, each voter pro-
vides a set of pairwise comparisons between the candidates
and the voting rule picks a unique winner based on these
preferences. In this paper, we study the parameterized com-
plexity of manipulation of pairwise voting rules by a single
manipulator when the votes are unweighted. The manipu-
lator faces a graph orientation problem where the vertices
correspond to the candidates and the edges correspond to
the pairwise comparisons that the manipulator is allowed to
make. We study the effect of various structural parameters
associated with this graph on the computational complexity
of the manipulation problem and provide a comprehensive
classification of the complexity landscape. We also intro-
duce a new parameter called diversity which is shown to
have useful algorithmic implications.

General Terms
Algorithms, Economics, Theory

Keywords
Social Choice Theory, Voting, Manipulation, Pairwise Pref-
erences, Parameterized Complexity

1. INTRODUCTION
One of the most well-studied questions in social choice

theory [1] concerns the problem of manipulation of voting
rules: given the votes of all the other voters, is it possible
for a strategic voter (namely the manipulator) to make a
preferred candidate win the election by casting a possibly
non-truthful vote? Unfortunately, the celebrated Gibbard-
Satterthwaite theorem [2, 3] states that strategic voting is
unavoidable for any voting rule that is non-dictatorial and
under which each of the three or more candidates has some
chance of winning.

Inspired by the work of Bartholdi, Tovey and Trick [4],
a large body of follow-up work has studied when and how
the computational difficulty of finding a manipulative vote
can be used as an effective workaround to this impossibility
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(see [5] for a survey on this topic). Much of this litera-
ture focuses on voting rules that aggregate preferences pro-
vided in the form of complete rankings over the entire set
of candidates. This assumption, however, breaks down for
large-scale settings like recommender systems that involve
extremely large candidate sets (e.g. movies, products, web-
pages etc.). In such settings, it is much more practical to
elicit partial preferences from the users in the form of top-k
preferences [6, 7, 8], partial orders [9] etc. Pairwise pref-
erences are the simplest form of partial preferences where
each voter is only required to provide a set of pairwise com-
parisons between the candidates, without either having to
compare all pairs of candidates (i.e. possibly incomplete) or
provide a transitive vote (i.e. possibly cyclic).

Recent work [10] has studied the problem of manipulation
of pairwise voting rules (i.e. voting rules that aggregate pair-
wise preferences) from both axiomatic and computational
perspectives. It has been shown that while the impossi-
bility of designing reasonable, non-manipulable voting rules
extends to the much larger domain of pairwise preferences,
computational complexity can once again provide a worst-
case barrier against manipulation. The goal of our study
is to develop a deeper understanding of the computational
complexity results in [10] using the toolkit of parameterized
complexity analysis [11, 12, 13, 14]. This involves a fine-
grained analysis of the running time in terms of the various
natural parameters associated with the problem, as opposed
to a coarse dependence on the size of the input as in the clas-
sical setting [15].

Specifically, we follow the framework of [10] where the ma-
nipulator is presented with an undirected graph (called the
action space), where each vertex corresponds to a candidate
and the edges correspond to the pairs of candidates that the
manipulator is allowed to compare. The task of the manip-
ulator is to orient some or all of these edges (via votes of
the form A�B, B�A or skip) in order to make a favorite
candidate win the election. We study how some of the nat-
ural structural parameters associated with this graph (like
vertex cover, feedback vertex set, maximum degree, treewidth
etc.) affect the computational complexity of the manipula-
tion problem. Our results provide a comprehensive classifi-
cation of the complexity landscape for all combinations of
these parameters (see Table 1). An interesting feature of
our study is the introduction of a parameter called diversity
which, in conjunction with other structural parameters, ex-
plains a complete transition in the complexity of the manip-
ulation problem from computational tractability (i.e. FPT,
XP) to intractability (i.e. W-hardness, para-NP-hardness).



vc pw fvs tw ∅

d FPT W[1]-hard and XP para-NP-

∆ FPT complete

∅ para-NP-complete

Table 1: Parameterized complexity results for pBorda-
Manipulation under the conditions specified by the corre-
sponding combination of parameters. The notation ∅ is used
to enable the consideration of singleton parameters. Merged
cells indicate combined parameters (refer Section 2 for rele-
vant definitions).

Contributions
Our contributions are as listed below. We refer the reader
to Table 1 for a summary of the results and to Section 2 for
relevant definitions. Figure 2 shows the relationship among
the various parameters considered in this study. All of our
results focus on a specific pairwise voting rule called pairwise
Borda (pBorda) which is defined later. The computational
problem corresponding to the manipulation of pBorda rule
is referred to as pBorda-Manipulation. Also note that all
parameters considered by us in this study are defined with
respect to the action space A of the manipulator.

1. We show that pBorda-Manipulation is efficiently
solvable when A has bounded treewidth, subject to
bounded maximum degree parameter. This extends
the tractability result for A = tree graph shown in [10].

2. We also define a new parameter called diversity which,
in combination with the parameter vertex cover, pro-
vides tractability even on instances where maximum
degree can be unbounded (i.e. grow with the number
of candidates).

3. Finally, we show computational barriers to extending
the above tractability results to any other combination
of the parameters listed in Table 1.

Organization of this paper.
We provide the relevant definitions and notation in Sec-

tion 2 and describe our results and proof techniques in Sec-
tion 3. We survey the related literature in Section 4 and
conclude with some directions for future work in Section 5.

2. PRELIMINARIES
Our terminology and notation closely follow that of [10].

Let [n] = {1, 2, . . . , n} denote the set of candidates and
U = {u1, u2, . . . , um} denote the set of voters in an election.

Pairwise preferences and pairwise voting rules.
Let �u ⊆ [n] × [n] denote the binary relation indicat-

ing the preferences of voter u, so that i�u j indicates that
voter u prefers candidate i over candidate j. For each pair
of candidates i, j and each voter u, we can have exactly one
of i�u j, j�u i or neither (i.e. voter u skips the compari-
son between i and j). We let R denote the set of all such
anti-symmetric and irreflexive binary relations on [n]; and
let Π = (�u1 ,�u2 , · · · ,�um) ∈ Rm denote the pairwise
preference profile of the voters.

Number of candidates (n)

Vertex Cover (vc)
Maximum degree (∆)

Diversity (d) Treewidth (tw)

FVS Pathwidth (pw)

Figure 2: A Hasse diagram depicting the relationship be-
tween the parameters. Each arrow is directed from a smaller
parameter to a larger one. The implications for parame-
terized tractability (FPT, XP) propagate upwards along the
figure in the direction of the arrows while intractability (W-
hardness) propagates in the opposite direction.

A pairwise voting rule r maps a pairwise preference
profile Π ∈ ∪∞k=1Rk to a unique candidate r(Π) ∈ [n].
Given a preference profile Π ∈ Rm and a pair of can-
didates i, j, let mij(Π) denote the number of vot-
ers who strictly prefer candidate i over candidate j,
i.e. mij(Π) =

∑m
k=1 1(i�uk j) where 1(.) is the indicator

function. A score-based pairwise voting rule is any pair-
wise voting rule r for which there exists a (natural) scoring
function s : ∪∞k=1Rk → Rn such that r(Π) is the highest-
scoring candidate according to s(Π) under some fixed tie-
breaking rule. That is, r(Π) = T (arg maxi si(Π)) for some

tie-breaking rule T : 2[n] \ {∅} → [n] satisfying T (S) ∈ S for
all non-empty S ⊆ [n]. Some examples of score-based pair-
wise voting rules are as follows:

(i) Pairwise Borda Rule (pBorda) [16]: The pBorda score
of candidate i under preference profile Π is given by1:

spBorda
i (Π) =

n∑
j=1

mij(Π)

mij(Π) +mji(Π)
.

(ii) Copelandα Rule [17]: The Copelandαscore (α ∈ [0, 1])
of candidate i under preference profile Π is given by:

sCopelandα

i (Π) =

n∑
j=1

1
(
mij(Π) > mji(Π)

)
+ α · 1

(
mij(Π) = mji(Π)

)
.

Manipulation of pairwise voting rules.
A pairwise voting rule r is said to be

manipulable if there exists a pair of pro-
files Π = (�u1 , . . . ,�um),Π′ = (�u1 , . . . ,�um−1 ,�

′
um) ∈ Rm

differing only in the preference of voter um such
that r(Π′)�umr(Π). That is, voter um (called the
manipulator) strictly prefers the new outcome over the old
one. The corresponding computational problem, referred to
as r-Manipulation, is defined as follows:

1where we adopt the convention 0/0 = 0.



(a) Before manipulation (b) After manipulation (c) After restricted manipulation

Figure 1: An illustration of the election instance in Example 2.1. (a) Each vertex of the multigraph represents a candidate
and each dashed edge represents the number of voters with that preference (e.g. two voters prefer A�C). (b) The pairwise
comparisons made by the manipulator are represented by solid edges and the pBorda score of the winning candidate is indicated
in boldface. (c) The restricted action space of the manipulator (A = {(A,C)}) is shaded in grey.

Definition 2.1. r-Manipulation

Instance: A tuple 〈Π, i∗,A, pref-type〉 where Π ∈ Rm−1

is the preference profile of the non-manipulators
(u1, u2, . . . , um−1), i∗ ∈ [n] is the distinguished candi-

date, A ⊆
(
[n]
2

)
is the set of pairwise comparisons that

the manipulator is allowed to make and pref-type ∈
{strict+acyclic, strict, acyclic, unrestricted} is the prefer-
ence constraint with respect to A.

Question: Does there exist a vote �um over A satisfying
pref-type such that r((Π,�um)) = i∗?

Here A ⊆
(
[n]
2

)
denotes the action space of the manip-

ulator i.e. the pairs of candidates that the manipulator
is allowed to vote over. Alternately, no pair of candi-
dates outside A can be compared by the manipulator. The
parameter pref-type indicates whether the preferences of
the manipulator over A are required to be strict (skip-
ping comparisons is not allowed), acyclic (directed cycles
of the form 1�u 2, 2�u 3, 3�u 1 etc. are not allowed),
strict+acylic (both strict and acylic) or unrestricted (no
such restriction). The computational complexity of r-
Manipulation was studied for various settings of the in-
puts A and pref-type in [10]. In this paper, however, we
only focus on problems where pref-type = unrestricted and
leave the study for other settings of pref-type as a direction
for future work. The following example from [10] illustrates
the role of the space A in the manipulation problem.

Example 2.1 (The role of action space A).
Consider the election setting shown in Figure 1a, where
the pBorda scores of the candidates A, B & C respectively
are 7/6, 3/2 & 1/3 and B is the pBorda winner. Suppose
we now add the manipulator u4 to this election whose
favorite candidate is A. Observe that if the manipulator
casts the vote {(A�B), (A�C)} (see Figure 1b), the new
pBorda scores for A, B & C will be 17/12, 4/3 & 1/4
respectively and A becomes the winner. Thus, the answer
to pBorda-Manipulation for this election instance is YES
when A = {(A,B), (A,C)} or A = {(A,B), (A,C), (B,C)}.
If, however, the manipulator is allowed to compare only
the candidates A and C (that is, A = {(A,C)}), then
despite voting in favor of A, the manipulator cannot
make A win (Figure 1c). Therefore, the answer to
pBorda-Manipulation is NO when A = {(A,C)} .

Excess scores.
The excess score of a candidate i is the amount by which

the score of i exceeds the score of the distinguished candi-
date i∗ in a given election. For instance, in Figure 1c, the
excess pBorda scores of candidates B and C (with respect
to distinguished candidate A) are 1/4 and −1 respectively.
Hence, r-Manipulation for a score-based voting rule r can
be restated as finding a vote for the manipulator such that
the final excess scores of all candidates are zero or less.

Vote configuration.
We will often use a shorthand of the form 1:3 for a pair

of candidates (i, j) to denote that one voter votes i�j while
three other voters vote j�i. We will refer to 1:3 (or more
generally a : b for non-negative integers a, b) as the vote
configuration between i and j.

Parameterized Complexity.
A parameterized problem is denoted by a

pair (Q, k) ⊆ Σ∗ × N. The first component Q is a classical
language and the second component k is a number (called
the parameter). Such a problem is called fixed–parameter
tractable (FPT) if there exists an algorithm that decides it

in time O(f(k)nO(1)) on instances of size n.
Just as NP-hardness is used as evidence that a problem

probably is not polynomial time solvable, there exists a hi-
erarchy of complexity classes above FPT, and showing that
a parameterized problem is hard for one of these classes is
considered evidence that the problem is unlikely to be fixed-
parameter tractable. The main classes in this hierarchy are

FPT ⊆W [1] ⊆W [2] ⊆ · · · ⊆W [P ] ⊆ XP

where a parameterized problem belongs to the class XP if
there exists an algorithm for it with running time bounded

by ng(k) for some computable function g. We refer the reader
to [11, 12, 13, 14] for further details.

A parameterized problem is said to be para-NP-complete if
it is NP-complete even for constant values of the parameter.
A classic example of a para-NP-complete problem is Graph
Coloring parameterized by the number of colors [18] —
recall that it is NP-complete to determine if a graph can be
properly colored with three colors. Observe that a para-NP-
complete problem does not belong to XP unless P = NP .

For any pair of parameterized problems A and B, we say
that A is (uniformly many:1) FPT-reducible to B if there
exist functions f, g : N → N, a constant α ∈ N and an
algorithm Φ which transforms an instance (x, k) of A into an



instance (x′, g(k)) of B in time f(k) · |x|α so that (x, k) ∈ A
if and only if (x′, g(k)) ∈ B. A convenient way of showing
that a problem is W[1]-hard is via an FPT reduction from a
known W[1]-hard problem. Hence, in the above definition,
if the problem A is known to be W[1]-hard in parameter k
and there exists an FPT reduction from A to B, then B is
W[1]-hard in the parameter g(k).

Parameters used in this study.
Let G = (V,E) denote a simple and undirected graph.
Maximum degree (∆): The maximum degree of G is the

maximum number of edges incident on any vertex of G.
Vertex Cover (vc): A set of vertices V ′ ⊆ V is a vertex

cover of G if for every edge (u, v) ∈ E, either u ∈ V ′ or
v ∈ V ′ or both.

Feedback Vertex Set (fvs): A feedback vertex set of a graph
is a set of vertices whose removal makes the graph acyclic.

Tree decomposition: A tree decomposition of a graph
G is a tuple T = (T, {Bt}t∈V (T )) where T is a tree and
each node t of T is assigned a set of vertices Bt ⊆ V
(called a bag) such that the following hold: (i) for each ver-
tex v ∈ V , there exists a node t such that v ∈ Bt (alter-
nately, ∪t∈V (T )Bt = V ); (ii) for each edge (u, v) ∈ E, there
exists a node t such that u ∈ Bt and v ∈ Bt, and (iii) for
each vertex v ∈ V , the set of nodes {t ∈ V (T ) : v ∈ Bt}
forms a connected subtree of T . Here V (T ) is the ver-
tex set of the tree T . The width of a tree decomposi-
tion T = (T, {Bt}t∈V (T )) equals maxt∈V (T ) |Bt| − 1, i.e. size
of the largest bag minus one. The treewidth (tw) of a
graph G is the minimum possible width of a tree decom-
position of G. The notions of pathwidth (pw) and path de-
composition are defined analogously in terms of paths.

Diversity (d): Given a preference profile Π of non-
manipulators’ votes, the diversity of the action space A is
the maximum number of distinct score transfers that a can-
didate can witness due to a single pairwise comparison made
by the manipulator. As an example, consider the election
instance shown in Figure 1a and consider the candidate A
in particular. Assuming that A = complete graph, the ma-
nipulator can make a pairwise comparison between any of
the three pairs (A,B), (B,C) or (C,A). If the manipulator
compares the pair (A,B), then the pBorda-score of candi-
date A can change by +1/6, 0 or −1/6 respectively, depend-
ing on whether the manipulator votes A�B, ‘skip’ or B�A.
This can be concisely represented as a score-transfer vec-
tor (+1/6, 0,−1/6). Similarly, the score transfer vector for
candidate A for a comparison involving (A,C) or (B,C)
is (+1/12, 0,−1/6) or (0, 0, 0) respectively. Since there are
three different kinds of such vectors, the diversity for candi-
date A is three. The diversity of an instance is the maximum
diversity witnessed by any candidate. Notice that for a given
election, diversity can be Θ(n) under the pBorda rule while
the same for Copelandα is O(1) due to the limited types of
score exchanges permitted under the definition of Copeland
voting rule. For any pairwise voting rule where a pairwise
comparison by the manipulator can only affect the scores of
the two candidates involved (examples include pBorda and
Copelandα), diversity is at most the maximum degree ∆.

Elimination problem in sports.
The sports elimination problem [19] asks whether a

team i∗ can still win a sports competition, given the cur-

rent scores of the teams and the set of games to be played
between them. Sports competitions are often scored accord-
ing to a scoring system, which specifies how many points
are awarded to the home and the away teams depending
on the outcome of a game between them. For example,
the well-known European football scoring system, denoted
by S = [(3, 0), (1, 1), (0, 3)], awards 3 points for win, 1 point
for draw and 0 for loss, regardless of the home-away distinc-
tion. Similarly, the system S = [(3, 0), (1, 2), (0, 3)] provides
an extra point to an away team under a draw outcome. The
computational problem corresponding to the above question,
called S-Elimination, is defined as follows [20]:

Definition 2.2. S-Elimination

Instance: A tuple 〈s, i∗,G〉 where s = (s1, s2, . . . , sN )T is
the vector of current scores of the N teams, i∗ ∈ [N ] is a

distinguished team and G ⊆
(
[N ]
2

)
is the set of remaining

games between the teams.

Question: Does there exist an assignment of outcomes for
the games in G such that i∗ ends up with the (joint) highest
total score among all teams under the scoring system S?

Partition.

Definition 2.3. Partition

Instance: A multiset A = {a1, a2, . . . , aN} of N positive
integers.

Question: Does there exist a partition of A into the sets A1

& A2 such that
∑
ai∈A1

ai =
∑
aj∈A2

aj = 1
2

∑
ak∈A

ak?

Partition is a well-known NP-complete problem [18]. We
assume without loss of generality that a1 ≤ a2 ≤ · · · ≤ aN .

Capacitated Dominating Set.

Definition 2.4. Capacitated Dominating Set

Instance: A triple 〈G, c, k〉 where G = (V,E) is a
graph, c : V → N is a capacity function for the vertices
of G and k is a positive integer.

Question: Does there exist a set of vertices V ′ ⊆ V of size
at most k in G such that each vertex v ∈ V \V ′ is adjacent
to some vertex v′ ∈ V ′ and no vertex v′ ∈ V ′ is adjacent to
more than c(v′) vertices in V ′ \ V ?

Capacitated Dominating Set was shown to be W[1]-hard
when simultaneously parameterized by the treewidth and so-
lution size k [21]. In fact, the problem remains W[1]-hard
when simultaneously parameterized by the pathwidth and
the size of the feedback vertex set of the graph G, even on
instances with only constantly many distinct capacities2.

2This can be shown by carrying out the reduction in [21]
while starting from Multicolored Clique on regu-
lar graphs and observing that the parameters pathwidth,
treewidth and feedback vertex set of the reduced Capaci-
tated Dominating Set instance are all O(k4) in size.



3. OUR RESULTS AND TECHNIQUES
Our classification result for the parameterized complexity

of pBorda-Manipulation for any combination of the con-
sidered parameters is summarized by Theorem 3.1 and Ta-
ble 1. We assume throughout that pref-type=unrestricted.

In the parameterized studies of computational problems
that arise in the context of voting, a commonly used param-
eter is the number of candidates (n) [22, 23, 24, 25, 26, 27].
We observe that for any pairwise voting rule that is easy to
evaluate, the problem of manipulation by a single manipu-
lator is trivially FPT for this choice of parameter, because
even a brute-force search over all possible votes of the manip-

ulator will yield the desired running time (i.e. O(3n
2

)). The
other natural choice of parameter is the number of voters.
However, we know from [10] that pBorda-Manipulation is
NP-complete even with twelve non-manipulators. Given the
extreme behaviors on the two obvious choices of parameters,
we turn to the action space of the manipulator A and try
to understand how the problem complexity is influenced by
parameters associated with the structure of A.

We start by recalling the result in [10] which states that
that pBorda-Manipulation is efficiently solvable when A
is a tree/forest/graph with maximum degree two. Given
this result, we follow the “distance from triviality” approach
in parameterized analysis [28] and consider parameters that
measure how far A is from the class of tractable instances
i.e. degree of closeness to being a tree or a forest. This mo-
tivates the study of parameters like treewidth (tw), feedback
vertex set (fvs) and maximum degree (∆); and upper/lower
bounds on these parameters like pathwidth (pw) and vertex
cover (vc) (refer Section 2 for formal definitions). Interest-
ingly, a similar set of parameters was recently used in the
parameterized complexity analysis of the closely-related S-
Elimination problem [29], and studying their influence on
the complexity of pBorda-Manipulation allows us to com-
pare the complexity landscapes of the two problems, as we
will see.

Our first set of results shows that the manipulation prob-
lem is, somewhat surprisingly, para-NP-complete for (i) the
maximum degree parameter, and (ii) any combination of the
parameters in {vc, fvs, pw, tw}. This already establishes a
contrast with S-Elimination which was shown to be in XP
when parameterized by the treewidth of the graph formed
by the set of remaining games [29].

On the other hand, pBorda-Manipulation is FPT when
simultaneously parameterized by maximum degree and any
combination of the other parameters. We ask if there is a
natural parameter that is, in general, smaller than maximum
degree, but that can still provide tractability when combined
with some of the other structural parameters. We discover
an answer in the form of a novel parameter called diversity
(d), which is a measure of how many different types of score
exchanges the manipulator encounters for any candidate.
Unfortunately, it turns out that pBorda-Manipulation is
NP-complete on graphs with constant diversity ; in fact, it
remains NP-complete even when the sum of diversity and
maximum degree is bounded by a constant [10]. On the
positive side, we show that diversity, when combined with
vertex cover, leads us to an FPT algorithm, while we ob-
tain XP algorithms by combining it with any of the other
parameters in {fvs, pw, tw}. We do not expect to improve
this XP result, as the problem remains W[1]-hard in those
cases.

We now state our main result (Theorem 3.1) that sum-
marizes the findings described above (see also Table 1).

Theorem 3.1. Let P = {vc, pw, fvs, tw, ∆, d} denote
the set of parameters defined over the action space A of
an instance of pBorda-Manipulation. Let X denote the
set {vc, pw, fvs, tw} and Y denote the set {d,∆}. Then

1. For any Q ⊆ X or Q ⊆ Y, pBorda-Manipulation
is NP-complete even when the sum of all parameters
in Q is bounded by a constant.

2. For all Q ⊆ P, pBorda-Manipulation parameterized
by Q is in XP if Q contains d along with any element
of X . Further, the problem is FPT if Q contains ∆
along with any element of X , or if it contains both d
and vc.

3. In the remaining case when Q ⊆ P does not contain ei-
ther ∆ or vc, pBorda-Manipulation is W[1]-hard pa-
rameterized by Q, even on instances where d is bounded
by a constant.

We briefly summarize these results and their implications.

(i) We show that pBorda-Manipulation remains NP-
complete even for instances where A has a vertex cover
of size two (Theorem 3.2). Since a bound on the size of
the vertex cover implies a bound on the size of the feed-
back vertex set, pathwidth and treewidth, we have NP-
completeness of pBorda-Manipulation even when pa-
rameterized by all parameters in X combined. To-
gether with the result from [10] showing NP-hardness
of pBorda-Manipulation on instances of maximum
degree ∆ = 3 (and therefore diversity d ≤ 3), this im-
plies statement 1 of Theorem 3.1.

(ii) We use dynamic programming over tree decomposi-
tions to show that pBorda-Manipulation is FPT
when parameterized by maximum degree and treewidth
(Theorem 3.4). Since all other parameters in X are
larger than treewidth, this gives an FPT result when ∆
is combined with any subset of parameters in X . Sim-
ilarly, we use Lenstra’s result [30] on Integer Linear
Programming being FPT in the number of variables
to show that pBorda-Manipulation is FPT when si-
multaneously parameterized by the vertex cover and
diversity of A (Theorem 3.5). These two results to-
gether imply statement 2 of Theorem 3.1.

(iii) Finally, we show that pBorda-Manipulation is W[1]-
hard when simultaneously parameterized by the feed-
back vertex set and pathwidth of A via an FPT-
reduction from Capacitated Dominating Set [21].
This proves statement 3 part of Theorem 3.1.

We now provide formal statements and proofs for the
results stated above. Our first result shows that pBorda-
Manipulation is para-NP-complete in vertex cover.

Theorem 3.2. pBorda-Manipulation is NP-complete
when A is a general graph with a vertex cover of size two
and pref-type = unrestricted.

Proof. The problem is clearly in NP. We show NP-
hardness by reduction from Partition.

Construction of the reduced instance: Given an in-
stance A = {a1, a2, . . . , aN} of Partition, we construct



an instance 〈Π, i∗,A, pref-type〉 of pBorda-Manipulation
as follows: the set of candidates consists of (i) the selec-
tor candidates X and Y , (ii) a candidate i for each pos-
itive integer ai ∈ A (called the integer candidates), (iii)
the distinguished candidate i∗ and (iv) the dummy candi-
dates D1, D2, . . . , D4N (hence n = 5N + 3 candidates over-
all). The action space A is the complete bipartite graph
between the selectors and the integer candidates. That
is, A = {∪i∈[N ]{(X, i) ∪ (Y, i)}}. The set of voters consists
of 2Q non-manipulators (where Q = (2aN + 1) · (2aN + 2))
and one manipulator. The votes of the non-manipulators
between the selectors and the integer candidates are set
up in order to ensure that the score transfers resulting
from the manipulator’s vote are ai/Q (if the manipulator
votes X�i or Y�i) and (2aN +1−ai)/Q (if the manipulator
votes i�X or i�Y ). Specifically, for each i ∈ [N ], both the
candidate pairs (i,X) and (i, Y ) are in ai : (2aN + 1− ai)
configuration. The votes involving dummy candidates are
set up as follows: for each i ∈ [N ], the pair (i∗, Di) is
in (2aN + 1−ai) : ai configuration while the pair (i∗, DN+i)
is in ai : (2Q − ai) configuration. For each i ∈ [N ], the
pair (i,D2N+i) is in (2aN + 1 − 3ai) : 3ai configuration
while the pair (i,D3N+i) is in 2ai : (2Q − 2ai) configura-
tion. Finally, for each i ∈ [N ] and each k ∈ [N ] \ i, the
pair (i,D2N+k) is in (2aN + 1− ak) : ak configuration while
the pair (i,D3N+k) is in ak : (2Q− ak) configuration.

It is easy to check that the excess score of each integer
candidate i after this construction is ai/2Q, while that of
each selector is −1

2Q

∑
ak∈A

ak. Also note that the selector
vertices constitute a vertex cover of A of size two.

Equivalence of solutions: (⇒) Suppose there exists a par-
tition of A into the sets A1 and A2. A valid manipula-
tive vote can be constructed from this partition as follows:
for each i ∈ [N ], the manipulator votes X�i if ai ∈ A1

or Y�i if ai ∈ A2 and skips all other comparisons. The
final excess score of each integer candidate i is negative,
since ai

2Q
− ai

Q
< 0. The final excess score for each selector

equals 0 due to the partition property, making i∗ the winner.
(⇐) Suppose there exists a valid manipulative vote that

makes i∗ win. Then, without loss of generality, each inte-
ger candidate i must lose at least one of its two pairwise
comparisons in A in order to get rid of its positive excess
score (Observation 1). Similarly, no integer candidate i can
win either of its pairwise comparisons against any of the se-
lectors or otherwise it accumulates an excess that it cannot
offload any further (Observation 2). Observation 1 implies
that the combined pBorda score that gets transferred from
the integer candidates to the selectors is at least

∑
ak∈A

ak
Q

.
Observation 2 implies that no pBorda score gets transferred
in the reverse direction. Since the selectors can together
handle an influx of at most

∑
ak∈A

ak
Q

, each integer candi-
date i must lose to exactly one of the selectors while the
other comparison is skipped. A partition can now be natu-
rally inferred from such a vote.

Remark 3.1. An implication of Theorem 3.2 is a sepa-
ration of the problems of pBorda-Manipulation and S-
Elimination in terms of their computational complexity.
As mentioned earlier, S-Elimination was shown to be
in XP when parameterized by the treewidth of the graph
formed by the set of remaining games [29] while pBorda-
Manipulation is para-NP-complete in the same parameter.
Hence, pBorda-Manipulation is necessarily harder than S-
Elimination unless P = NP .

Our next result establishes the W[1]-hardness of pBorda-
Manipulation in terms of the size of the feedback vertex
set and the pathwidth of A, even on instances where the
diversity of A is bounded by a constant.

Theorem 3.3. pBorda-Manipulation is W[1]-hard
when simultaneously parameterized by feedback vertex set
and pathwidth of A when A = general graph with constant
diversity and pref-type = unrestricted.

Proof. We show an FPT reduction from Capacitated
Dominating Set. Recall from Section 2 that Capacitated
Dominating Set is W[1]-hard when simultaneously param-
eterized by the feedback vertex set and pathwidth of the in-
put graph even on instances with only a constant number of
distinct capacities.

Construction of the reduced instance: Given an in-
stance 〈G = (V,E), c, k〉 of Capacitated Dominating Set,
we construct an instance 〈Π, i∗,A, pref-type〉 of pBorda-
Manipulation as follows: the set of candidates consists of
(i) the source X and the sink Y , (ii) a candidate vi for each
vertex in G (the vertex candidates), (iii) a candidate ei for
each edge in G (the edge candidates), (iv) the distinguished
candidate i∗ and (v) the dummy candidates D1, D2, . . . , D`
where ` = 7|V |+ 2|E|+ ∆ + 2− 2k and ∆ is the maximum
degree of graph G. Hence, n = 8|V | + 3|E| + ∆ − 2k + 5.
The action space A is the union of all unordered pairs of
candidates connected by dashed edges in Figure 3. That is,

A =
{
{∪i∈[|V |](X, vi)}

⋃
{∪j∈[|E|](ej , Y )}

⋃
{∪i∈[|V |],j∈[|E|](vi, ej) where vi is adjacent to ej in G}

}
.

Figure 3: This figure shows the reduced pBorda-
Manipulation instance (excluding the dummy candidates
and i∗) constructed from the given Capacitated Dominat-
ing Set instance. The action space of the manipulator A
is shown on the left via dashed lines along with the excess
pBorda scores. The vertex candidates are indicated by cir-
cles in the middle layer and the edge candidates are shown
as triangles. The right side shows the configuration of votes
of the non-manipulators and the resulting scores transfers.

The set of voters consists of Z non-manipulators
(where Z = (B + φ) · (B + φ+ 1), B = |V | + |E| +



∑
vi∈V (G) c(vi) and φ = maxi∈|V | c(vi)) and one manipula-

tor. The votes corresponding to action space A are set up
as follows: for each i ∈ [|V |], the candidate pair (X, vi) is
in (B + c(vi)) : (φ− c(vi)) configuration. For each i ∈ [|V |]
and each j ∈ [|E|] such that vi is adjacent to ej in G, the
candidate pair (vi, ej) is in (B + φ − 1) : 1 configuration.
Finally, for each j ∈ [|E|], the candidate pair (ej , Y ) is
in 2 : (B + φ − 2) configuration. We omit the description
of the votes involving dummy candidates due to space limi-
tations and remark that they are only used to calibrate the
excess scores of candidates as shown in Figure 3. This fin-
ishes the construction of the election instance.

Note that the reduction is efficient since it
uses O((|V |+ |E|)2) voters and O(|V | + |E|) candi-
dates. Also note that the reduction is parameter preserving,
in that if the pathwidth and size of the optimal feedback
vertex set of G are w and t, then the same parameters
for the action space A are O(w2) and (t + 2) respectively.
Furthermore, the diversity of the reduced election instance
is a constant since the original Capacitated Dominating
Set instance only has O(1) distinct capacity values.

Equivalence of solutions: (⇒) Suppose S ⊆ V (G) is a
valid capacitated dominating set. Then a valid manipula-
tive vote can be constructed as follows: first, the manipula-
tor triggers score transfers from source X to vertex candi-
dates in V (G) \ S with a vote vi�X for all vi ∈ V (G) \ S.
This brings the excess score of X below zero and results
in an excess of B/Z for each vi ∈ V (G) \ S. Next, for
each vi ∈ V (G) \S, the manipulator votes ej�vi for exactly
one edge candidate ej that connects vi to a candidate v′i ∈ S
that vi is assigned to. This results in a negative excess score
for all vertex candidates in V (G) \ S while each edge can-
didate ej chosen above by the manipulator now acquires an
excess score of (B + φ − 1)/Z. Finally, for each such edge
candidate ej , the manipulator votes Y�ej and v′i�ej . It
is easy to check that after this step no candidate in A has
positive excess score, making i∗ the pBorda winner.

(⇐) Suppose there exists a valid manipulative vote that
makes i∗ win. Then, without loss of generality, X must lose
against at least (|V | − k) vertex candidates in order to of-
fload its excess. Call this set S′. Hence, |S′| ≥ |V | − k
and each candidate in S′ acquires an excess of B/Z as a
result. Next, observe that any candidate in S′ can only of-
fload its excess score to the edge candidates adjacent to it
in G. As a result, each edge candidate affected in this man-
ner (there must be at least (|V | − k) such edge candidates
overall) acquires an excess of (B + φ − 1)/Z, that it must
offload to the sink Y and the other vertex candidate adja-
cent to it. Hence, the sink Y suffers a total inflow of at
least (|V | − k) · (B + φ− 2)/Z from the affected edge can-
didates. By design, this is also the maximum inflow that the
sink can handle without gaining positive excess. Therefore,
the set S′ must consist of exactly (|V |−k) vertex candidates
such that each candidate in S′ is connected to a candidate
in V (G) \ S′ via an edge candidate. Besides, no candidate
in V (G) \ S′ can be adjacent to more than c(vi) candidates
in S′, or else there will be no means for this candidate to
offload its own excess score. Therefore, the set V (G) \ S′
constitutes a capacitated dominating set of G.

Remark 3.2. Except for scoring systems of the form
S = {(i, t− i) : 0 ≤ i ≤ t} for some t ∈ N, S-Elimination
was shown to be W[1]-hard in the parameters feedback
vertex set and pathwidth via separate (although simi-

lar) proofs in [29]. By instantiating S-Elimination
for S = [(3, 0), (1, 2), (0, 3)] and using the observation in [10]
that S-Elimination becomes a special case of pBorda-
Manipulation under such instantiation, one can alter-
nately derive W[1]-hardness of pBorda-Manipulation in
terms of the two parameters individually. By contrast, The-
orem 3.3 provides a single proof for showing W[1]-hardness
in the two parameters simultaneously.

Our first algorithmic result shows that pBorda-
Manipulation is FPT when simultaneously parameterized
by the treewidth and maximum degree of A. We show this by
the standard dynamic programming procedure over a given
tree decomposition [14] and omit the detailed proof due to
space limitations.

Theorem 3.4. pBorda-Manipulation is solvable in

time O
(
∆O(dw2)(n logm)O(1)), where ∆, w and d denote the

maximum degree, treewidth and diversity of A respectively.

Note that since d ≤ ∆ for pBorda rule, the running time
above is FPT in maximum degree ∆ and the treewidth of A.
Further, since ∆ ≤ n, the running time is also XP with
respect to the diversity d and treewidth w of A. We restate
these observations as the following corollary.

Corollary 3.1. pBorda-Manipulation is FPT when
parameterized by the maximum degree and the treewidth
of A; and in XP when parameterized by the diversity and
the treewidth of A.

Our next algorithmic result pertains to graphs of bounded
vertex cover number and bounded diversity.

Theorem 3.5. pBorda-Manipulation is solvable in

time O
(
f(k, d)(n logm)O(1)), where k and d denote the size

of a vertex cover and diversity of A respectively and f is a
computable function.

Proof. The proof proceeds by partitioning the vertices
of the independent set of A into equivalence classes based
on their interactions with the vertex cover, and exploiting a
size bound on the number of such equivalence classes in the
subsequent ILP formulation.

Specifically, let S ⊆ V (A) be a vertex cover of A of
size k and let I = V (A) \ S be the corresponding in-
dependent set. For any T ⊆ S, let IT ⊆ I denote
the set of all vertices in I whose neighborhood within A
is exactly the set T . Next, given T = {v1, . . . , vt} ⊆ S
and a vector ET = 〈(α1, β1), . . . , (αt, βt)〉 consisting of pairs
of non-negative integers (αi, βi), define the equivalence
class IT,ET ⊆ IT such that for any pair of vertices vi ∈ T
and u ∈ IT,ET , the candidate pair (vi, u) is in αi : βi config-
uration with respect to the votes of non-manipulators. Note
that since the diversity d of the instance is bounded, any
vertex of the independent set must belong to exactly one of
at most 2k · dk equivalence classes.

Call a vertex u ∈ IT,ET safe with respect to a vec-

tor z ∈ {−1, 0, 1}|T | if the excess score of u is zero or less for
the following vote of the manipulator: for each vi ∈ T , u�vi
if z(i) = +1; ‘skip’ the comparison (u, vi) if z(i) = 0
and vi�u if z(i) = −1. Note that fixing the manipulator’s
vote on all pairwise comparisons in A involving u fixes the
pBorda score of u. Similarly, define the safety-set of a ver-
tex u ∈ IT,ET as the set of all vectors z ∈ {−1, 0, 1}|T | with



respect to which u is safe. We say that a vertex u ∈ IT,ET
sees a vote z ∈ {−1, 0, 1}|T | if z is the restriction of the ma-
nipulator’s vote to the pairwise comparisons in A involv-
ing u.

Given an equivalence class IT,ET and the safety-set for
each u ∈ IT,ET , define a safe-subclass as the set of all vertices
in IT,ET with identical safety-sets. Denote the number of

safe-subclasses in IT,ET by NT,ET . Thus, NT,ET ≤ 3k.
We now claim that any valid solution to pBorda-

Manipulation can be transformed into another (possibly
different) solution where all vertices inside a safe-subclass
see the same vote vector. Indeed, fix a safe-subclass and
let z′ be the restriction of a valid vote � as seen by the
vertex with the highest excess score in that safe-subclass.
An alternate vote can now be constructed as follows: in the
original vote �, replace the vote vector currently seen by
each vertex inside the given safe-subclass by z′, while keep-
ing the rest of the vote unchanged. It is easy to check that
the excess score constraints for all vertices continue to re-
main satisfied in the new vote. Therefore, without loss of
generality, all vertices inside a safe-subclass see the same
vote vector in a valid vote of the manipulator.

Our algorithm takes as input an instance of pBorda-
Manipulation, namely 〈Π, i∗,A〉 and returns a YES/NO
output indicating the existence of a valid manipulative vote
(along with a valid vote, if one exists). The algorithm starts
by guessing the manipulator’s vote within the vertex cover
(call this guess �S). There are at most

(
k
2

)
such pairs, hence

the total number of choices is at most 3O(k2). For each such
guess, we obtain a new instance of pBorda-Manipulation,
namely 〈Π′, i∗,A′〉 where Π′ is a voting profile representing
the original votes of the non-manipulators combined with
the manipulator’s vote �S over the vertex cover and A′ rep-
resents the restriction of the graph A to the bipartite sub-
graph S ×I. The algorithm now uses ILP to solve this new
problem for each equivalence class in parallel, and checks if
the combined vote constitutes a valid solution.

Formulating the ILP : We now describe the variables and
constraints for the ILP.

Variables: For each subset T ⊆ S, each score vector

ET = 〈(α1, β1), . . . , (αt, βt)〉, each 1 ≤ p ≤ 3|T | and each
1 ≤ q ≤ NT,ET , define a binary variable ZT,ET ,p,q ∈ {0, 1}.
Here ZT,ET ,p,q = 1 (respectively 0) indicates that given
T , ET and the induced equivalence class IT,ET , the safe-
subclass indexed by q sees (respectively does not see)
the vote vector indexed by p. Thus, there are at most
2k · dk · 32k variables overall. In other words, the number
of variables depends only on the parameters d and k.

Constraints: Our ILP has three types of constraints:

(i) Sanity constraints:

(a) ZT,ET ,p,q ∈ {0, 1} for all T, ET , p and q.

(b) for every T , ET and q,
∑
p ZT,ET ,p,q = 1 (i.e. each

safe-subclass sees exactly one vote vector).

(ii) Excess score constraints for the vertex cover : for each
vertex vi ∈ S∑

T∈Tv

∑
ET

∑
q

∑
p ZT,ET ,p,q · 1(pi = 0) · αi

αi+βi
· |q|

+ZT,ET ,p,q · 1(pi = −1) · αi+1
αi+βi+1

· |q|

+ZT,ET ,p,q · 1(pi = +1) · αi
αi+βi+1

· |q| ≤ s∗

where Tv = {T ⊆ S | v ∈ T} and |q| represents the
cardinality of the safe-subclass q. The latter can be
efficiently precomputed.

(iii) Excess score constraints for the independent set : for
all T , ET , p and q

ZT,ET ,p,q ≤ Z
safe
T,ET ,p,q

where Zsafe
T,ET ,p,q ∈ {0, 1} is a (precomputed) binary

indicator specifying whether, given T , ET and the in-
duced equivalence class IT,ET , the vector p belongs to
the safety-set of (any vertex in) the safe-subclass q.

The theorem now follows since ILP feasibility is FPT when
parameterized by the number of variables [30], which, as
remarked earlier, is a function of d and k alone.

Remark 3.3. The proof techniques used in our algorith-
mic results (Theorems 3.4 and 3.5) can be readily applied to
S-Elimination to recover the corresponding results in [29].

4. RELATED WORK
Parameterized complexity analysis has proven extremely

useful in scrutinizing the computational behavior of a variety
of problems in computational social choice, namely winner-
determination [22, 31, 24, 32], manipulation [23, 33, 34, 26,
27, 35], bribery [36, 37, 38], possible and necessary winner
problems [39, 40, 41], etc. We refer the reader to [42, 43] for
detailed surveys on this topic.

Among the studies on the parameterized complexity of
manipulation of standard voting rules, our work shares
the spirit of [34, 35] where parameterization of the pref-
erence domain (in their case, in terms of closeness to single-
peakedness) was used to show special-case tractability re-
sults. Specifically, [34] showed that unweighted Borda ma-
nipulation with two manipulators is efficiently solvable over
the domain of single-peaked preferences, although the prob-
lem is known to be NP-complete over the unrestricted do-
main [44, 33].3 This result was later generalized in [35] where
the manipulation problems for Borda and Copelandα rules
by two manipulators were shown to be FPT in the param-
eter single-peaked width (which measures the distance of a
preference profile from single-peakedness).

5. CONCLUDING REMARKS
We studied the problem of manipulation in the model of

pairwise preferences and gave a complete classification of
the parameterized complexity of manipulating the pairwise
Borda rule in terms of various natural parameters relating to
the action space. This involved the introduction of diversity
as a parameter, which we demonstrated to be useful from
an algorithmic perspective.

Our work opens up two very natural directions for fu-
ture work. First, the parameterized complexity of pBorda-
Manipulation for other settings of the parameter pref-

type remains to be analyzed. Second, it would be interesting
to compare the parameterized behavior of pBorda rule with
that of other pairwise voting rules like Copelandα [17] (the
classical complexity landscape for this family of rules was
described in [10]), PageRank [45], HodgeRank [46], Ranked
Pairs, Schulze’s rule [47] etc.
3Recall that the problem of unweighted Borda manipulation
by a single manipulator was shown to be efficiently solvable
over the domain of rankings in [4].
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