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ABSTRACT
For one-sided matching problems, two widely studied mech-
anisms are the Random Serial Dictatorship (RSD) and the
Probabilistic Serial Rule (PS). Both mechanisms require only
that agents specify ordinal preferences and have a number
of desirable economic and computational properties. How-
ever, the induced outcomes of the mechanisms are often in-
comparable and thus there are challenges when it comes to
deciding which mechanism to adopt in practice. In this pa-
per, working in the space of general ordinal preferences, we
provide empirical results on the (in)comparability of RSD
and PS and analyze their respective economic properties.
We then instantiate utility functions for agents, consistent
with the ordinal preferences, with the goal of gaining in-
sights on the manipulability, efficiency, and envyfreeness of
the mechanisms under different risk attitude models.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems; J.4 [Social and Behavioral Sciences]: Eco-
nomics

General Terms
Economics, Theory, Experimentation

Keywords
Mechanism Design, Matching, Random Assignment, Proba-
bilistic Serial, Random Serial Dictatorship

1. INTRODUCTION
The problem of assigning a number of indivisible objects

to a set of agents, in the absence of monetary transfers,
is fundamental in many multiagent resource allocation ap-
plications, and has been the center of attention amongst re-
searchers at the interface of artificial intelligence, economics,
and mechanism design. Assigning dormitory rooms or of-
fices to students, students to public schools, college courses
to students, organs and medical resources to patients, mem-
bers to subcommittees, etc. are some of the myriad examples
of one-sided matching problems [31, 5, 13, 25].
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Two important (randomized) matching mechanisms that
only elicit ordinal preferences from agents are Random Se-
rial Dictatorship (RSD) [2] and Probabilistic Serial Rule
(PS) [11]. Both mechanisms have important economic prop-
erties and are practical to implement. The RSD mechanism
has strong truthful incentives but guarantees neither effi-
ciency nor envyfreeness. PS satisfies efficiency and envyfree-
ness; however, it is susceptible to manipulation. Therefore,
there are subtle points to be considered when deciding which
mechanism to use. For example, given a particular prefer-
ence profile, the mechanisms often produce random assign-
ments which are simply incomparable and thus, without ad-
ditional knowledge of the underlying utility models of the
agents, it is difficult to determine which is the “better” out-
come. Furthermore, properties like efficiency, truthfulness,
and envyfreeness can depend on whether there is underlying
structure in the preferences, and even in general preference
models it is valuable to understand under what conditions
a mechanism is likely to be efficient, truthful, or envyfree as
this can guide designers choices.

We study the comparability of PS and RSD when there
is only one copy of each object, and analyze the space of
all preference profiles for different combinations of agents
and objects. We show that despite the inefficiency of RSD,
the fraction of random assignments at which PS stochasti-
cally dominates RSD vanishes, especially when the number
of agents is less than or equal to the available objects. We
then instantiate utility functions for agents to gain insights
on the manipulability, social welfare, and envyfreeness of the
two mechanisms under different risk attitudes.

Our main result is that under risk aversion, the social
welfare of RSD is as good as PS but RSD does create envy
among the agents (though the fraction of envious profiles
and total envy are small). Moreover, when the number of
agents and objects are equal, RSD assignments are less likely
to be dominated by PS and overall RSD assignments cre-
ate negligible envy among agents. We also show that PS
is highly susceptible to manipulation in almost all combi-
nations of agents and objects. The fraction of manipulable
profiles and the gain from manipulation rapidly increases,
particularly when agents become more risk averse.

2. MODEL
In this section, we describe the basic one-sided match-

ing problem and introduce the two mechanisms we study
in detail, Random Serial Dictatorship (RSD) [2] and Proba-
bilistic Serial Rule (PS) [11]. We then introduce a number of
properties and criteria used to evaluate these mechanisms.



2.1 One Sided Matching
A one-sided matching problem consists of a set of n agents,

N , and a set of m indivisible objects, M .1 Each agent i ∈ N
has a private strict preference ordering, �i, over M where
a �i b indicates that agent i prefers to receive object a over
object b. We represent the preference ordering of agent i by
the ordered list of objects �i= a �i b �i c or �i= (abc),
for short. We let P denote the set of all complete and strict
preference orderings over M . A preference profile �∈ Pn
specifies a preference ordering for each agent, and we use
the standard notation �−i= (�1, . . . ,�i−1,�i+1, . . . ,�n)
to denote preferences orderings of all agents except i and
thus �= (�i,�−i).

The goal in a one-sided matching problem is to assign the
objects in M to the agents in N according to preference
profiles, under the constraint that no object can be assigned
to more than one agent. If m = n then this means that
each agent will receive exactly one object, however if m < n
then some agents will receive no object and if m > n then
some agents may receive multiple objects. An assignment is
represented as a matrix

A =


A1

A2

...
An

 =


A1,1 A1,2 . . . A1,m

A2,1 A2,2 . . . A2,m

...
...

. . .
...

An,1 An,2 . . . An,m


where Ai,j ∈ [0, 1] is the probability that agent i is assigned
object j. We let A denote the set of all feasible assign-
ments where an assignment A ∈ A is feasible if and only if
∀j ∈M ,

∑
i∈N Ai,j = 1. If A ∈ A is such that Ai,j ∈ {0, 1}

then we say that A is a deterministic assignment; otherwise,
A is a random assignment. Every random assignment can
be represented as a convex combination of deterministic as-
signments [37], and thus we view random assignments as a
probability distribution over a set of deterministic assign-
ments.

2.2 Matching Mechanisms
In general, a matching mechanism,M, is a mapping from

the set of preference profiles, Pn to the set of feasible as-
signments, A. That is, M : Pn 7→ A. In this paper, we
focus our attention on two widely studied mechanisms for
one-side matching: Random Serial Dictatorship (RSD) [2]
and Probabilistic Serial Rule (PS) [10].

RSD relies on the concept of priority orderings over agents.
Such an ordering is an ordered list of agents where the first
agent gets to select its most preferred object from the set
of objects, the second agent then selects its most preferred
object from the set of remaining objects and so on, until no
objects remain.2 Given a preference profile �∈ Pn, RSD
returns an assignment RSD(�) ∈ A which is a uniform dis-
tribution over all deterministic assignments induced from all
possible priority orderings over the set of agents. RSD has

1This problem is sometimes called the assignment problem
or house allocation problem in the literature.
2For n < m, RSD requires a careful method for picking
sequence at each realized priority ordering based on an ar-
bitrary serial dictatorship quota mechanism, which directly
affects the efficiency and envy of the assignments [19, 12].
For simplicity, we use the variant of RSD based on a quasi-
dictatorial mechanism [29] where the first agent selects its
most preferred (m−n+1) objects, and the rest of the agents
choose one object each.

been widely adopted for fair and strategyproof assignment
for the school choice problem, course assignment, house al-
location, and room assignment [1, 35, 2, 3]

PS treats objects as a set of divisible goods of equal size
and simulates a simultaneous eating algorithm. Each agent
starts “eating” its most preferred object, all at the same
rate. Once an object is gone (eaten away) then the agent
starts eating its next preferred object among the remaining
objects. This process terminates when all objects have been
“eaten”. Given a preference profile �∈ Pn, PS(�) ∈ A is a
random assignment where Ai,j is the probability (fraction)
that object j is assigned to (or “eaten by”) agent i.

2.3 General Properties
In this section, we define key properties for matching mech-

anisms. In particular, we formally define efficiency, strat-
egyproofness and envyfreeness for (randomized) matching
mechanisms under ordinal preferences. To evaluate the qual-
ity of a random assignment, we use first-order stochastic
dominance [18, 11]. Given a random assignment Ai, the
probability that agent i is assigned an object that is at least
as good as object ` is defined as follows

w(�i, `, Ai) =
∑

j∈M :j�i`

Ai,j (1)

We say an agent always prefers assignment Ai to Bi, if for
each object ` the probability of assigning an object at least
as good as ` under Ai is greater or equal that of Bi, and
strictly greater for some object.

Definition 1 (Stochastic Dominance). Given a pref-
erence ordering �i, random assignment Ai stochastically
dominates (sd) assignment Bi( 6= Ai) if

∀` ∈M, w(�i, `, Ai) ≥ w(�i, `, Bi) (2)

A matching mechanism is sd-efficient if at all preference
profiles �∈ Pn, for all agents i ∈ N , the induced assignment
is not stochastically dominated by any other assignment.

Definition 2 (sd-Efficiency). A random assignment
is sd-efficient if for all agents, it is not stochastically domi-
nated by any other random assignment.

An important desirable property in matching mechanisms
is strategyproofness, that is the mechanism is designed so
that no agent has incentive to misreport its preferences.

Definition 3 (sd-Strategyproofness). MechanismM
is sd-strategyproof if at all preference profiles �∈ Pn, for all
agents i ∈ N , and for any misreport �′i∈ Pn, such that
A =M(�) and A′ =M(�′i,�−i), we have:

∀` ∈M, w(�i, `, Ai) ≥ w(�i, `, A′i) (3)

Sd-strategyproofness is a strict requirement. It implies
that under any utility model consistent with the prefer-
ence orderings, no agent can improve her expected utility
by misreporting. We say that a mechanism is weakly sd-
strategyproof if the inequality in Equation 3 is strict for
some ` ∈ M , but does not hold for all objects. Clearly,
sd-strategyproofness implies weak sd-strategyproofness but
the converse does not hold.

An assignment is manipulable if it is not sd-strategyproof.
If there exists some agent who strictly benefits from the



n ≥ m n < m

PS RSD PS RSD

sd-strategyproof weak 3 7 3
sd-efficiency 3 7 3 7
sd-envyfree 3 weak 3 weak

Table 1: Properties of PS and RSD.

manipulation, (i.e. the mechanism is not even weakly sd-
strategyproof) then we say the assignment is sd-manipulable.

Finally, we are interested in whether mechanisms are fair
and use the notion of envyfreeness to this end. An assign-
ment is sd-envyfree if each agent strictly prefers her random
allocation to any other agent’s assignment.

Definition 4 (sd-Envyfreeness). Given agent i’s pref-
erence �i, assignment Ai is sd-envyfree if for all agents
∀k 6= i ∈ N ,

∀` ∈M, w(�i, `, Ai) ≥ w(�i, `, Ak) (4)

We say an assignment is weakly sd-envyfree if the inequality
in Equation 4 is strict for some ` ∈M , but does not hold for
all objects. A matching mechanism satisfies sd-envyfreeness
if at all preference profiles �∈ Pn, it induces sd-envyfree
assignments for all agents.

2.4 Properties of RSD and PS
The theoretical properties of PS and RSD have been well

studied in the economics literature [11], and we summarize
the results in Table 1. Both mechanisms are ex post efficient,
that is, their realized outcomes cannot be improved without
making at least one agent worse off. PS has been shown to
be both sd-envyfree and sd-efficient. However, it is not even
weakly sd-strategyproof when n < m [22] and is only weakly
sd-strategyproof when n ≥ m. On the other hand, RSD is
always sd-strategyproof, but it is only weakly sd-envyfree
and is not sd-efficient. Example 1 illustrates the inefficiency
of RSD.

Example 1. Suppose there are four agents N = {1, 2, 3, 4}
and four objects M = {a, b, c, d}. Consider the following
preference profile �= ((abcd), (abcd), (badc), (badc)). Ta-
ble 2 shows the outcomes for PS(�) and RSD(�). In this
example, all agents strictly prefer the assignment induced by
PS over the RSD assignment. Thus, RSD is inefficient at
this preference profile.

a b c d

A1 1/2 0 1/2 0
A2 1/2 0 1/2 0
A3 0 1/2 0 1/2
A4 0 1/2 0 1/2

(a) Assignment under PS(�)

a b c d

A1 5/12 1/12 5/12 1/12
A2 5/12 1/12 5/12 1/12
A3 1/12 5/12 1/12 5/12
A4 1/12 5/12 1/12 5/12

(b) Assignment under RSD(�)

Table 2: Example showing the inefficiency of RSD

3. INCOMPARABILITY OF RSD AND PS
We argue that the theoretical findings on RSD and PS

do not necessarily provide enough guidance to a market de-
signer trying to select the correct mechanism for a specific
setting. For example, while we know that PS is sd-efficient
and RSD is not, this does not mean that PS always outper-
forms RSD.

a b c

A1 1/2 0 1/2
A2 1/2 1/4 1/4
A3 0 3/4 1/4

(a) Assignment under PS(�)

a b c

A1 1/2 0 1/2
A2 1/2 1/6 1/3
A3 0 5/6 1/6

(b) Assignment under RSD(�)

Table 3: Incomparability of RSD and PS

Example 2. Suppose there are three agents N = {1, 2, 3}
and three objects M = {a, b, c}. Consider the following pref-
erence profile �= ((acb), (abc), (bac)). Table 3 shows PS(�)
and RSD(�). Neither assignment dominates the other since
agent 1 is ambivalent between the two assignments while
agent 2 prefers PS(�) and agent 3 prefers RSD(�).

If we knew the utility functions of the agents, consistent
with their ordinal preferences, then we might be able to use
the notion of (utilitarian) social welfare to help determine
the better assignment.3 However, it is easy to construct
different utility functions for the agents in Example 2 where
both RSD and PS maximize social welfare.

Similarly, the envy of RSD and the manipulability of PS
both depend on the structure of preference profiles, and
thus, a compelling question, that justifies the practical im-
plications of deploying a matching mechanism, is to analyze
the space of preference profiles to find the likelihood of in-
efficient, manipulable, or envious assignments under these
mechanisms.

4. GENERAL PREFERENCES
The theoretical properties of PS and RSD only provide

limited insight into their practical applications. In partic-
ular, when deciding which mechanism to use in different
settings, the incomparability of PS and RSD leaves us with
an ambiguous choice in terms of efficiency, manipulability,
and envyfreeness. Thus, we examine the properties of RSD
and PS in the space of all possible preference profiles as
well as under lexicographic preferences. Lexicographic pref-
erences are present in various applications and have been
extensively studied in artificial intelligence and multiagent
systems as a means of assessing allocations based on ordinal
preferences [15, 32, 17]. Under lexicographic preferences, we
denote the efficiency, strategyproofness, manipulablity, and
envyfreeness with ld- (lexicographically dominate) prefix.

The number of all possible preference profiles is super ex-
ponential (m!)n. For each combination of n agents and m
objects we performed a brute force coverage of all possible
preference profiles. Thus, for all subsequent figures each
data point shows the fraction of all possible preference pro-
files. For the cases of n = 10 and m ∈ {9, 10}, we randomly
generated 1,000 instances by sampling from a uniform pref-
erence profile distribution. For each preference profile, we
ran both PS and RSD mechanisms and compared their out-
comes in terms of the stochastic dominance relation. Note
that not only is computing RSD probabilities #P-complete
(and thus intractable) [6, 33], but checking the desire prop-
erties such as envyfreeness, efficiency, and manipulablity of
random allocations is shown to be NP-hard for general set-
tings [9, 8]. Thus, for larger settings even if we randomly

3Given utility functions for the agents, where ui(j) is the
utility agent i derives from being assigned object j, the (utili-
tarian) social welfare of an assignment A is

∑
i

∑
j Ai,jui(j).
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(b) The fraction that PS lexicographically dominates RSD.

Figure 1: The fraction of preference profiles under which PS dominates RSD.
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(b) The fraction of sd-manipulable profiles under PS.

Figure 2: Heatmaps illustrating the manipulablity of PS.

sample preference profiles it is not easy to verify the afore-
mentioned properties.

A preliminary look at our empirical results illustrates the
following: when m ≤ 2, n ≤ 3, PS coincides exactly with
RSD, which results in the best of the two mechanisms, i.e.,
both mechanisms are sd-efficient, sd-strategyproof, and sd-
envyfree. Another interesting observation is that when m =
2, for all n PS is sd-strategyproof (although the PS assign-
ments are not necessarily equivalent to assignments induced
by RSD), RSD is sd-envyfree, and for most instances PS
stochastically dominates RSD, particularly when n ≥ 4.

4.1 Efficiency
Our first finding 4 is that the fraction of preference profiles

at which RSD and PS induce equivalent random assignments
goes to 0 when n grows. There are two conclusions that
one can draw. First, this result confirms the theoretical
results of Manea on asymptotic inefficiency of RSD [24], in
that, in most instances, the assignments induced by RSD are

4Periodically, we present results without a figure.

not equivalent to the PS assignments. Second, this result
suggests that the incomparability of outcomes is significant,
that is, the social welfare of the random outcomes is highly
dependent on the underlying utility models.

The fraction of preference profiles �∈ Pn for which RSD
is stochastically dominated by PS at � converges to zero
as n

m
→ 1. Figure 1a shows that when n grows beyond

n > 5, due to incomparability of RSD and PS with regard
to the stochastic dominance relation, the RSD assignments
are not stochastically dominated by sd-efficient assignments
induced by PS.

We also see similar results when we restrict ourselves to
lexicographic preferences (Figure 1b). The fraction of pref-
erence profiles �∈ Pn for which RSD is lexicographically
dominated by PS at � converges to zero as n

m
→ 1.

For lexicographic preferences, we also observe that the
fraction of preference profiles for which PS assignments strictly
dominate RSD-induced allocations goes to 1 when the num-
ber of agents and objects diverge. The fraction of preference
profiles �∈ Pn for which RSD is lexicographically domi-
nated by PS at � converges to 1 as |n−m| grows.



One immediate conclusion is that although RSD does not
guarantee either sd-efficiency or ld-efficiency, in most set-
tings when n

m
→ 1 (and also n ≤ m for sd-efficiency), nei-

ther of the two mechanisms is preferred in terms of efficiency.
Hence, one cannot simply rule out the RSD mechanism.

4.2 Manipulability of PS
One critical issue with deploying PS is that it does not

provide incentives for honest reporting of preferences. Al-
though for n ≥ m PS is weakly sd-strategyproof [11] and
ld-strategyproof [34], when n < m PS no longer satisfies
these two properties.5 The real concern is that, in the ab-
sence of strategyproofness, PS allocations are only efficient
(or envyfree) with respect to the reported preferences, which
in turn may not be truthful. Thus, we are interested in un-
derstanding the degree to which PS allocations are manipu-
lable.

Figure 2 shows that the fraction of manipulable profiles
goes to 1 as n or m grow. PS is almost 99% manipulable for
n > 5,m > 5. Another interesting observation is that, for
all n < m, the fraction of sd-manipulable preference pro-
files goes to 1 as m − n grows (Figure 2b). These results
imply that when agents are entitled to receive more than a
single object, agents can strictly benefit from misreporting
their preferences. The manipulability of PS under lexico-
graphic preferences has a similar trend and the fraction of
ld-manipulable preference profiles converges to 1 even more
rapidly.

4.3 Envy in RSD
We measured the fraction of agents that are weakly sd-

envious of at least one another agent when running RSD.
Our results show that the percentage of agents that are
weakly envious increases with the number of agents. More-
over, fixing any n > 3, the percentage of agents that are
(weakly) envious grows with the number of objects; how-
ever, there is a sudden drop in the percentage of envious
agents when there are equal number of agents and objects.

5. UTILITY MODELS
Given a utility model consistent with an agent’s prefer-

ence ordering, we can find the agent’s expected utility for a
random assignment. Let ui denote agent i’s Von Neumann-
Morgenstern (VNM) utility model consistent with its prefer-
ence ordering �i. That is, ui(a) > ui(b) if and only if a �i b.
Then, agent i’s expected utility for random assignment Ai
is E(ui|Ai) =

∑
j∈M Ai,jui(j).

We say that agent i (strictly) prefers assignment Ai to
Bi if and only if E(ui|Ai) > E(ui|Bi). A mechanism is
strategyproof if there exists no agent that can improve its
expected utility by misreporting its preference ordering.

Definition 5 (Strategyproof). MechanismM is strat-
egyproof if for all agents i ∈ N , and for any misreport
�′i∈ Pn, such that A =M(�) and A′ =M(�′i,�−i), given
a utility model ui consistent with �i, we have E(ui|Ai) ≥
E(ui|A′i).

5A recent experimental study on the incentive properties of
PS shows that human subjects are less likely to manipulate
the mechanism when misreporting is a Nash equilibrium.
However, subjects’ tendency for misreporting is still signifi-
cant even when it does not improve their allocations [20].

A matching mechanism is envyfree if for all preference
profiles it prescribes an envyfree assignment.

Definition 6 (Envyfreeness). Assignment A is en-
vyfree if for all i, k ∈ N , given utility model ui consistent
with �i, we have E(ui|Ai) ≥ E(ui|Ak).

A random assignment A is sd-efficient if and only if there
exists a profile of utility values consistent with � such that A
maximizes the social welfare ex ante [11, 26]. This existence
result does not shed light on the social welfare when com-
paring two random assignments, since an assignment can be
sd-efficient but may not have desirable ex ante social welfare.
Given utility functions for the agents, the (utilitarian) social
welfare of an assignment A is

∑
i E(ui|Ai). Thus, given a

profile of utilities we investigate the (ex ante) social welfare
of the assignments under PS and RSD.

5.1 Instantiating Utility Functions
To deepen our understanding as to the performance of the

two mechanisms, we investigate different utility models. In
particular we look at the performance of the mechanisms
when the agents are all risk neutral (i.e. have linear utility
functions), when agents are risk seeking and when agents
are risk averse.

Our first utility model is the well-studied linear utility
model, and we use a variant based on the Borda rule from
the social choice literature. Given an agent i’s preference
ordering �i, we let r(�i, j) denote the rank of object j.
For example, given preference ordering a �i b �i c then
r(�i, a) = 1, r(�i, b) = 2 and r(�i, c) = 3. The utility
function for agent i, given object j is ui(j) = m− r(�i, j).

We use an exponential utility model to capture risk at-
titudes beyond risk-neutrality. An exponential utility has
been shown to provide an appropriate translation for indi-
viduals’ utility models and provides a constant risk aversion
rate [4]. In particular,

ui(j) =

{
(1− e−α(m−r(�i,j)))/α, α 6= 0

m− r(�i, j), α = 0
(5)

The parameter α represents the agent’s risk attitude. If
α > 0 then the agent is risk averse, while if α < 0 then the
agent is risk seeking. When α = 0 then the agent is risk
neutral and we have a linear utility model. The value |α|
represents the intensity of the attitude. That is, given two
agents with α1 < α2 < 0, we say that agent 1 is more risk
averse than agent 2. Similarly if α1 > α2 > 0 then agent 1
is more risk seeking than agent 2.

6. RESULTS
For our experiments, we vary three parameters: the num-

ber of agents n, the number of objects m, and the risk at-
titude factor α. Each data point in the graphs shows the
average over all possible preference profiles. We study the
same settings as in Section 4 when n ≥ m and n < m. For
each utility function, we look at homogeneous populations
of agents where agents have the same risk attitudes.

To compare the social welfare, we investigate the per-
centage change (or improvement) in social welfare of PS
compared to RSD under various utility models. That is,∑

i E(ui|PS(�))−
∑

i E(ui|RSD(�))∑
i E(ui|RSD(�))

. To measure the manipula-

bility of PS, we are interested in answering two key ques-
tions: i) In what fraction of profiles PS is manipulable by
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(a) Risk seeking, α = −0.5.
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(c) Risk seeking, α = −2.
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(d) Risk averse, α = 2.

Figure 3: The percentage change in social welfare. The negative values show that RSD outperforms PS.

at least one agent? and ii) If manipulation is possible,
what is the average percentage of maximum gain, that is

maxi{E(ui|PS(�′i,�−i))−E(ui|PS(�))

E(ui|PS(�))
}? To study the envy un-

der the RSD mechanism, we consider two measures: i) the
fraction of envious agents, and ii) the total envy felt by all
agents.

6.1 Linear Utility Model
We first looked at how RSD and PS perform under the as-

sumption that the utility models are linear. In most cases,
the social welfare under PS increases compared to RSD;
however, the percentage change from PS to RSD becomes
smaller when n = m (less than 0.015 overall improvement in
all cases). Interestingly, under RSD the fraction of envious
agents is approximately 0 when n ≥ m. With regards to
strategyproofness, PS is manipulable in most combinations
of n and m and the fraction of manipulable profiles and the
utility gain from manipulation increases as the number of
objects compared to agents increases.

6.2 Risk Seeking
Figure 3 presents our results in terms of percentage change

in social welfare. Positive numbers show the percentage of
improvement in social welfare. Negative values represent

those cases where RSD has increased social welfare com-
pared to PS.

Social welfare: Fixing α < 0, for n ≥ m when n
m

grows
PS improves the social welfare compared to RSD in most
cases and the percentage of improvement also increases. A
similar trend holds when varying risk intensity α for fixed n
and m where n 6= m. For n < m, when m

n
grows the fraction

of profiles at which PS has higher social welfare compared
to RSD rapidly increases and the percentage change is also
noticeably larger, quickly getting close to 90% improvement
(Fig. 3a and 3c). This social welfare gap between PS and
RSD grows as the risk intensity |α| increases. Surprisingly,
this trend changes for equal number of agents and objects
n = m: the more risk-seeking agents are (larger |α|), RSD
becomes more desirable than PS, and in fact, RSD improves
the social welfare in more instances.

Envy: For n ≥ m, the fraction of envious agents un-
der all profiles vanishes and RSD becomes envyfree. This
is more evident when agents are more risk-seeking. Intu-
itively, these observations confirm the theoretical findings
about the envyfreeness of RSD under lexicographic prefer-
ences [19] since one can consider lexicographic preferences
as risk-seeking preferences where an object in a higher rank-
ing is infinitely preferred to all objects that are ranked less
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(a) Risk seeking, α = −0.5.
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Figure 4: The fraction of manipulable instances under PS.

preferably. When n < m, our quasi-dictatorial extension of
RSD creates some envy among the agents, but this envy also
starts to fade out when the risk intensity |α| increases.

Manipulability: Figure 4 shows the manipulability of
the PS assignments when agents are risk seeking. We see
that the possibility of manipulation (and any gain) decreases
as the risk intensity increases. When n ≥ m the fraction of
manipulable profiles goes to 0 the more risk seeking agents
become. However, when n < m even though the the fraction
of manipulable profiles (and manipulation gain) decreases,
the fraction of manipulable profiles goes to 1 as m

n
grows.

6.3 Risk Aversion
Social welfare: Figures 3b and 3d show that fixing risk

factor α > 0, when n
m

grows PS assignments are superior to
that of RSD in more instances and the percentage change in
social welfare increases. Fixing risk factor α > 0 and when
m
n

grows, RSD is more likely to have the same social welfare
as PS, and in fact in some instances the social welfare under
RSD is better than the social welfare under PS. Fixing m
and n, when the risk intensity α increases RSD is more likely
to have the same social welfare as PS, that is, the welfare gap
between PS and RSD closes when agents are more risk averse
(α increases). This result is insightful and states that under

risk aversion the random allocations prescribed by RSD are
either as good as PS or in some cases even are superior to
the allocations prescribed by PS. Figure 5 illustrates the
percentage change in social welfare based on the difference
between available objects and agents (m−n) for risk seeking,
linear, and risk averse utilities with different risk intensities.

Envy: When n ≥ m, the fraction of envious agents and
total envy grows as n

m
→ 1. Increasing the risk intensity

(|α|), the fraction of envious agents increases; however, the
total envy among the agents remains considerably low. For
n < m, the fraction of envious agents and total envy grows
as risk intensity increases. Lastly, we noticed that in all
instance where RSD creates envy among the agents, around
25% of agents bear more than 50% of envy. That is, few
agents feel extremely envious while all other agents are either
envyfree or only feel a minimal amount of envy.

Manipulability: Figures 4b and 4d illustrate the manip-
ulability of the PS assignments when agents have risk averse
preferences. The fraction of manipulable profiles rapidly
goes to 1 as m

n
grows. Similarly, as agents become more

risk averse (α increases) the fraction of manipulable profiles
goes to 1 and the manipulation gain increases.



7. RELATED LITERATURE
Assignment problems with ordinal preferences have at-

tracted interest from many researchers. Svensson showed
that serial dictatorship is the only deterministic mechanism
that is strategyproof, nonbossy, and neutral [36]. Random
Serial Dictatorship (RSD) (uniform randomization over all
serial dictatorship assignments) satisfies strategyproofness,
proportionality, and ex post efficiency [2]. Bogomolnaia and
Moulin noted the inefficiency of RSD from the ex ante per-
spective, and characterized the matching mechanisms based
on first-order stochastic dominance [11]. They proposed the
probabilistic serial mechanism as an efficient and envyfree
mechanism with regards to ordinal preferences. While PS
is not strategyproof, it satisfies weak strategyproofness for
problems with equal number of agents and objects. How-
ever, PS is strictly manipulable (not weakly strategyproof)
when there are more objects than agents [21]. Kojima and
Manea, showed that in large assignment problems with suf-
ficiently many copies of each object, truth-telling is a weakly
dominant strategy in PS [22]. In fact PS and RSD mech-
anisms become equivalent [14], that is, the inefficiency of
RSD and manipulability of PS vanishes when the number of
copies of each object approaches infinity.

The practical implications of deploying RSD and PS have
been the center of attention in many one-sided matching
problems [1, 27]. In the school choice setting with multi-
capacity alternatives, Pathak observed that many students
obtained a more desirable random assignment through PS in
public schools of New York City [30]; however, the efficiency
difference was quite small. These equivalence results and
their extensions to all random mechanisms [23], do not hold
when the quantities of each object is limited to one.

Other interesting aspects of PS and RSD such as compu-
tational complexity and best-responses strategies have also
been explored [16, 8, 7]. In this vein, Aziz et al. proved
the existence of pure Nash equilibria, but showed that com-
puting an equilibrium is NP-hard [7]. Nevertheless, Mennle
et al. [28] showed that agents can easily find near-optimal
strategies by simple local and greedy search. In the absence
of truthful incentives, the outcome of PS is no longer guar-
anteed to be efficient or envyfree with respect to agents’
true underlying preferences, and this inefficiency may result
in outcomes that are worse than RSD, especially in ‘small’
markets [16].

8. DISCUSSION
We studied the space of general preferences and provided

empirical results on the (in)comparability of RSD and PS. It
is worth mentioning that at preference profiles where PS and
RSD induce identical assignments, RSD is sd-efficient, sd-
envyfree, and sd-strategyproof. However, PS is still highly
manipulable. We investigated various utility models accord-
ing to different risk attitudes. Our main results are:

• In terms of efficiency, the fraction of preference profiles
�∈ Pn for which PS stochastically (or lexicographically)
dominates RSD converges to zero as n

m
→ 1. When in-

stantiating the preferences with actual utility functions,
PS allocations are only slightly better than RSD alloca-
tions in terms of social welfare when varying n and m,
particularly under risk averse utilities. In fact, in some
cases RSD allocations are superior in terms of social wel-
fare (see Figure 5).
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Figure 5: The percentage change in social welfare between
RSD and PS for α ∈ (−2,−1,−0.5, 0, 0.5, 1, 2) and different
combinations of m− n. Positive α indicates risk averse and
negative α risk taking profiles. Linear utility is indicated by
α = 0. As agents become more risk averse the social welfare
gap between RSD and PS closes.

• PS is almost 99% manipulable when n ≤ m and the frac-
tion of sd- and ld- manipulable profiles rapidly goes to 1
as m

n
grows. When instantiating the preferences with util-

ity functions, the manipulability of PS increases as agents
become more risk averse. Moreover, an agent’s utility gain
from manipulation also grows when the risk intensity in-
creases.

• For risk seeking utilities, when n ≥ m the fraction of en-
vious agents under all profiles vanishes and RSD becomes
envyfree. For risk averse utilities, the fraction of envious
agents increases as agents become more risk averse. How-
ever, the total amount of envy just slightly grows, and
surprisingly, only few agents feel extremely envious while
all other agents are either envyfree or only feel a minimal
amount of envy.

Our work in this paper can be used to help guide design-
ers of multiagent systems who need to solve allocation prob-
lems. If a designer strongly requires sd-efficiency then the
theoretical results of PS indicate that it is better than RSD.
However, our results show that PS is highly prone to manip-
ulation for various combinations of agents and objects. This
manipulation and the possible gain from manipulation be-
come more severe particularly when agents are risk averse,
and designers need to take this into consideration. On the
other hand, while RSD does not theoretically guarantee sd-
efficiency, our results show that it tends to do quite well –
sometimes even outperforming PS in terms of social welfare.
RSD also has the added advantage of being sd-strategyproof
and thus is not prone to the manipulation problems of PS.

An interesting future direction is to study egalitarian so-
cial welfare of the matching mechanisms in single and multi
unit assignment problems as well as in the full preference
domain. Another open direction is to provide a parametric
analysis of the matching mechanisms according to the risk
aversion factor.
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