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ABSTRACT
Voting systems in which voters are partitioned to districts
encourage accountability by providing voters an easily iden-
tifiable district representative, but can result in a selection
of representatives not representative of the electorate’s pref-
erences. In some cases, a party may have a majority of the
popular vote, but lose the elections due to districting effects.

We define the Misrepresentation Ratio which quantifies
the deviation from proportional representation in a district-
based election, and provide bounds for this ratio under var-
ious voting rules. We also examine probabilistic models for
election outcomes, and provide an algorithm for approxi-
mating the expected Misrepresentation Ratio under a given
probabilistic election model. Finally, we provide simulation
results for several such probabilistic election models, show-
ing the effects of the number of voters and candidates on the
misrepresentation ratio.

1. INTRODUCTION
A voting system is a method by which voters choose be-

tween several alternatives and their opinions are aggregated,
ultimately choosing a winner (or winners). Democratic coun-
tries, in principle, aim to have a representative outcome, by
having a legislature roughly representative of the public’s
beliefs, and in some countries, by having the chief executive
elected directly by the public.

However, many democracies use a district based system
for the selection of their legislature (most prominently, the
Westminster system and the US system). In district based
schemes, voters are divided into geographically based dis-
tricts1, and each one selects a representative to the legis-
lature. The selection mechanisms differ: Westminster and
US systems use plurality, France uses plurality with runoff,
while Australia uses STV. Typically, candidates in each con-
stituency are members of political parties, and some systems
have the majority party form the executive (others, such as

1While we use the term “district”, other terms include “elec-
toral district” (US), “riding” (Canada), and “constituency”
(UK).
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the US, have a similar process for selecting the chief execu-
tive).

Single-member district elections provide voters a single
and easily identifiable district representative, encouraging
service and accountability. However, the proportion of seats
in the legislature belonging to a party may be very different
from the proportion of voters supporting that party in the
overall population; this is known as the “referendum para-
dox” [33]. The disparity between the popular vote and the
district vote has been a source of contention in US elections;
by redistricting constituencies (“gerrymandering”), political
parties have manipulated the elections [25, 10]; indeed, the
US Voter Rights Act of 1965 includes several provisions that
require change in congressional districts in several states to
be approved by federal authorities [36].

Moreover, such a discrepancy is caused not only by gerry-
mandering, but is built into district-based mechanisms. In
the US presidential election of 1876, the losing candidate,
Samuel Tilden, got 6% more votes than the winner, Ruther-
ford Hayes, an occurrence that happened twice since. The
electoral college, through which the president is elected, dis-
plays the problem even more acutely; in the US 1992 presi-
dential election a candidate that garnered 18.9% of the vote,
Ross Perot, was not represented at all. In the UK system,
in 1951 the Conservative party lost the popular vote to the
Labour party while still winning a strict parliamentary ma-
jority; in general, while no party has received a majority
of the popular vote in a British election since 1931, all but
two elections resulted in a parliamentary majority for one
of the parties. Similar scenarios have unfolded in Canada,
Australia and elsewhere.

Such problems may also arise in any multi-level decision
making process. So, if an organization or a sensor analysis
system (e.g., an automated car), attempts to decide on its
next step based on inputs from sub-systems employing their
own decision making processes (e.g., each sensor family is a
district, and sensors are “voting” between themselves), they
may also encounter such a problem, as a small amount of
signals may cause the system to reach a wrong outcome.

Consider the following example. Two political parties, A
andB compete in seven districts of equal size, D1, D2, . . . , D7.
Both parties run a candidate in every district, and the plu-
rality voting rule is used to determine the winner. Now,
suppose that in districts D1, . . . , D4, 60% of the vote goes
to the representative of party A; on the other hand, in dis-
tricts D5, D6 and D7 the representatives of party B take
100% of the vote. The final vote tally shows party A wins



the election, even though party B has nearly twice as many
voters!

As the example above shows, a minority (those in favor of
party A) may rule over the majority (those in favor of party
B). We refer to the outcome in this case as a misrepre-
sentation of the voters’ preferences. District based electoral
systems tend to be more “stable”: they tend to result in a
smaller number of candidates, and thus less fragmentation
of the parliamentary body. However, misrepresentation is
an inherent byproduct of electoral stability; indeed, stabil-
ity comes at the heavy price of potentially overriding the
preferences of most voters.

One way to quantify the degree to which a system skews
the true desires of the voters — as captured by the total
support for each party — is to examine the ratio between
the number of those who voted for the most popular party in
general, and the number of voters who voted for the winner.
When more people voted for the losing party than for the
winning party this ratio is larger than one. The higher this
ratio is, the more pronounced the misrepresentation effect.

Our Contribution.
We examine the issue of misrepresentation due to district-

based systems under several prominent voting rules. We
first provide a metric for quantifying the misrepresentation
effect, both for elections with two parties and for elections
with more than two parties, which we call the Misrepresen-
tation Ratio. We provide bounds on the Misrepresentation
Ratio for several voting rules, depending on the numbers of
voters, candidates and districts. Finally, we provide some
simulation results regarding the misrepresentation ratio in
certain scenarios, to examine its values under various set-
tings.

2. RELATED WORK
Voting district representability has been the topic of much

public debate and research for two centuries, since the ad-
vent of redistricting in United States (“gerrymandering”) 2

and in United Kingdom, redistricting due to an attempt
to follow population changes in successive reform bills. Most
of the research on these issues focused on historical [8, 7],
sociological [29] and political science [10] issues. Particularly
since the Voting Rights Act of 1965, much legal research
has also dealt with district based system, though usually
focusing on particular countries (mainly – though not solely
– the US) [36, 25].

Political science research on such misrepresentation has
mostly focused on trying to assess when it might occur,
studying the history of elections or using statistic assump-
tions [38] and analysis on election data [16, 31, 32, 27, 28,
22]. This analysis, however, does not try to asses how bad
the misrepresentation can get, and mostly focuses on plural-
ity and its variants. A somewhat similar line of research tries
to assess voter’s misrepresentation as distance of parliamen-
tary seat allocation compared to pure representational set-
tings [19, 17, 20, 15], applying concepts such as the Banzhaf

2Our analysis focused on how bad misrepresentation might
be, rather that the issue of how restructuring districts may
be used as a purposeful manipulation, designed to give an
unfair advantage to a specific candidate, more in line with
other forms of manipulation and control in elections [11, 13,
1, 3].

index and voting power. However, we deal with the dif-
ferent issue of quantifying the misrepresentation degree by
examining the degree of support of the losing candidate.

The computational social choice community focused on
manipulation by voters [40, 41, 35], and less on more insti-
tutional motivated manipulation. Some work has been done
on control problems, in which a central authority may signif-
icantly influence results (e.g. [23] and the survey by [12]), in-
cluding preliminary work on dividing voters into groups [9].
Optimal gerrymandering strategies have been studied in [34,
18]; however, these have mostly focused on 2 party scenarios,
as in the US.

In establishing our bounds, we encounter the problem of
finding the minimal score a candidate can win with, given a
scoring rule; [39] studies a similar problem, but their results
do not directly apply to our setting. Our problem is a special
case of the bin packing problem with a constant number of
types; this problem has been widely believed to be NP-hard,
but recent advances [37, 26] have eventually established that
it is in P [21].

3. PRELIMINARIES
We have a set of voters, V , and each voter i ∈ V has

a preference order (without ties) over the candidate set C,
denoted ≺i. For every c, c′ ∈ C, we say that i prefers c to
c′ if c′ ≺i c. We denote the set of linear preferences over C
as L(C).

A voting rule is a function f : L(C)n → C, whose input is
a finite list of linear preferences over C (a profile) of size n
(most voting rules are well defined for any n > 0) and whose
output is a candidate c ∈ C. Voting rules are often assumed
to output a set of candidates, but since in our setting we are
only interested in the winners of the election, the output of
f is a single candidate (f may incorporate some fixed tie-
breaking rule). Since the set of voters and their preferences
is constant throughout the paper, we overload notation and
define f over subsets of V : given a set Q ⊆ V , we let f(Q)
be the output of f over the preferences of the voters in Q.

A voting rule is neutral if the outcome is invariant under
candidate name changes. More formally, a voting rule f is
neutral if for any two candidates c and c′, if every voter
i ∈ V now ranks c in the position of c′ and vice versa, the
outcome of f is unchanged if the winner was neither c or c′,
is c′ if the winner was c, and is c if the winner was c′.

We say a voting rule f is score-monotone if it induces a
score for every candidate c ∈ C (i.e., each candidate ends up
with some real number, and the one with the maximal one
is chosen), and the following holds: given two preference
profiles R1 = (≺i)i∈V and R2 = (≺′i)i∈V , if for all a, b ∈
C \ {c} we have a ≺i b ⇐⇒ a ≺′i b, and under R1, c is in
a position that is no lower than its position in R2, then c’s
score under R1 is at least as high as its score in R2. These
properties hold for the common voting rules which will be
used in this paper.

Scoring Rules: A scoring rule is defined by a vector of
scores, (α1, . . . , αm), where α1 ≥ · · · ≥ αm = 0, α1 >
03 and m is the number of candidates. Given a voter
i ∈ V , let rank i(c) be the rank of candidate c in the
preference order of i. Given a set of voters Q ⊆ V ,

3Assuming αm = 0 is no loss of generality: if αm > 0 score
vector can be normalized by setting αj = αj − αm.



let scoreαc (Q) =
∑
i∈Q αranki(c). Given a set of voters

Q ⊆ V , the output of Scoringα(Q) is a member of
arg maxc∈C scoreαc (Q) (if there are ties, we break them
according to some tie-breaking rule). Many scoring
rules are widely used. For example, the plurality rule,
where α1 = 1 and αj = 0 for all j ≥ 2, the veto rule,
where αj = 1 for all j < m, and αm = 0, both of
which are specific examples of the family of k-approval
scoring rules, in which α1 = . . . = αk = 1 and αk+1 =
. . . = αm = 0. Another common scoring rule is the
Borda rule, where αj = m− j for all j ∈ {1, . . . ,m}.

Copeland Rule: Given a set of voters Q ⊆ V , we say that
a candidate c beats c′ in a pairwise election under
Q if a majority of the members of Q prefer c to c′.
For each candidate c ∈ C, we let scoreCp

c (Q) to be
the number of candidates that c beats in a pairwise
election, minus the number of candidates that beat
c. The Copeland voting rule outputs Copeland(Q) =
arg maxc∈C scoreCp

c (Q).

We note that both scoring rules and Copeland have a nat-
ural notion of a candidate score, and were conceptualized
as such in [6]. This will be instrumental in defining voting
misrepresentation, as we do in the following section.

Definition 1. Given a voting rule f which induces a can-
didate score, we let scoref (c,Q) to be the score of c ∈ C
under f , when the voter set is Q ⊆ V .

4. THE MISREPRESENTATION RATIO
We are interested in settings where the set of voters is par-

titioned into districts: these are z disjoint sets D1, . . . , Dz
whose union is V . The election winner under this model is
determined by applying the voting rule f to D1, . . . , Dz; the
candidate who wins the greatest number of districts is the
winner (ties are broken using some tie-breaking rule).

Definition 2. Given a partition of voters into z districts
D = {D1, . . . , Dz}, let w be the winner of the election when
voters are partitioned into districts as per D. The misrep-
resentation ratio is the ratio between the maximum score of
any candidate under f , and the score of w. Formally:

MR(V,D, f) =
maxc∈C scoref (c, V )

scoref (w, V )
.

Note that MR(V,D, f) ≥ 1; if MR(V,D, f) = 1 then the
winner of the district elections completely captures the pop-
ular vote (as measured by f). The higher MR(V,D, f), the
less popular the winning candidate is in the eyes of the peo-
ple; thus, district elections with a high misrepresentation
ratio are ones where voters’ preferences are not appropri-
ately aggregated, due to the effects of district elections.

Remark 1. In this work we assume all districts have the
same number of voters. Without any assumptions on the
number of voters in each district, the worst case misrepre-
sentation ratio (Definition 2) can be arbitrarily high: con-
sider 2` + 1 districts. Suppose ` + 1 of the districts have
only three voters, and ` of them have M voters, where M
is a very large number. There are two candidates, A and
B; candidate A wins all votes in the ` districts where there
are M voters, and candidate B wins 2 of the 3 votes in the

` + 1 districts holding three voters. Thus, the total num-
ber of votes for B is O(`), and the total number of votes
for A is O(M`), resulting in an arbitrarily high misrepre-
sentation. Our results can be extended by incorporating an

additional parameter: maxD,D′∈D
|D|
|D′| ; however, in the in-

terest of space and clarity, we assume that districts are of
equal size.

5. BOUNDS ON THE MISREPRESENTATION
RATIO

In what follows, we establish upper bounds on the worst-
case misrepresentation ratio; we show that our bounds are
tight, i.e. that there exist district elections where the bound
holds.

Furthermore, we always refer to the district voting in-
stance 〈V,C, (≺i)i∈V ,D, f〉 as one that maximizes MR, where
|C| = m, |D| = z, for all D ∈ D: |D| = n , and f is some
neutral score-monotone rule. We assume that w ∈ C is the
winner of the district elections; that is, w won a plurality
of the districts. We mark d(c) for c ∈ C as the number of
districts won by candidate c. We assume that in the case
of a tie for first place in a district, ties are broken against
the district election winner; moreover, the district election
winner must win a strict majority of the districts.

Intuitively, in order to establish our bound, we want to
create the worst possible election. Such an election would
have the candidate w win by as small a margin as possi-
ble, with some other candidate p 6= w being as popular as
possible while losing a majority of the districts.

Given a score inducing voting rule f , we let Ln(f) be the
maximal score that a candidate can get while still losing an
n voter election, and Mn(f) be the maximal score that a
candidate can get and win an n voter election. For example,
Ln(Plurality) =

⌈
n
2

⌉
− 1, and Mn(Plurality) = n. The fol-

lowing lemma offers some insights regarding the number of
districts won by each candidate in an instance maximizing
MR.

Lemma 1. If f is a score-monotone, neutral rule then
there is a district voting instance maximizing MR such that:

1. if w does not win the election in a district D, then w
is ranked last by all voters in D.

2. If the candidate p wins in D, then it is ranked first by
all voters in D; if not and the winner is not w, then
the score of p from D is Ln(f).

3. d(p) = d(w)−1 if m > 2 or z is odd, otherwise d(p) =
d(w)− 2.

Proof. If w loses the election in a district D, let i ∈ D
be a voter who did not rank w last; we can simply swap
the candidate that was ranked last by i with w in i’s rank-
ing. This will result in a voter profile where the score of
w is weakly lower, and the score of every other candidate
is weakly higher (by the score monotonicity and neutral-
ity of f). Furthermore, if p wins the election in D, but is
not ranked first by some voter i ∈ D, swapping p with the
candidate ranked first by i (this is not w by the previous
observation) will result in p having a weakly higher score.
Whenever p loses the election in a district, its score from
that district is lower than the score that it could have ob-
tained by winning a district, but as we wish to maximize it



(and we do not care for the score of candidates other than
w and p), p should score Ln(f).

To show that d(c) ≤ d(p) for all c 6= w, suppose there
is a candidate c 6= w, p for which d(c) > d(p). Changing
districts who voted for c to vote for p will only improve p’s
score while not changing w as winner; thus, d(c) ≤ d(p) for
all c 6= p, w.

For 2 candidates and an even number of districts, the dif-
ference between the number of districts must be at most 2;
if it is more, we can take districts voting for w and change
them to p, improving p’s score and hurting w (while hav-
ing w remain the election winner). For 2 candidates, if the
number of districts is odd we do a similar process, reaching
a difference of 1.

Now, suppose w has won q more districts than p, and
q > 2. In this case, we can take some district where w won
and make p the winner in that district. That would strictly
improve p’s score, reduce w’s score and maintain w as the
overall election winner. This establishes that d(w) ≤ d(p) +
2. Now, we wish to show that if m ≥ 3 then d(w) = d(p)+1.
If d(c) = 0 for all c 6= w, p then we are back in the two
candidate case which we have previously covered, and if z is
even, we can give one of w’s district to c. If there is some
district D won by some c 6= w, p and d(w) = d(p) + 2 then
we can make p win c’s district, weakly improving its score
while maintaining w’s score at the same level, and keeping
w as the district election winner.

5.1 Scoring Rules
We begin our investigation by bounding MR when f is a

scoring rule. We begin with a simple technical lemma.

Lemma 2. For every scoring rule f = Scoringα, where
α = (α1, . . . , αm), if α1 > α2, Ln(f) = α1(

⌈
n
2

⌉
− 1) +

α2(
⌊
n
2

⌋
+ 1). If α1 = α2, denote α′ as the maximal αi such

that αi < α1, then Ln(f) = (n− 1)α1 + α′.

Proof. We shall consider some candidate c ∈ C which we
make the winner, while giving candidate p ∈ C the maximal
score for a runner up. First, showing that there indeed can
be a winner with a higher score, if α1 > α2, if

⌈
n
2

⌉
−1 voters

give α1 to p and α2 to c, while the rest of the voters give α1

to c and α2 to p, we reach the desired score for p while c is
the winner. If α1 = α2, for n − 1 voters giving α1 or α2 to
both p and c, and the final voter giving α1 points to c and
α′ points to p, we again reach the desired score while c is
the winner.

Now, we shall show no higher score is possible. For the
case α1 = α2 it is obvious: the only higher score possible
is nα1, which is the maximal one, hence the winner’s. For
α1 > α2, suppose there is a better Ln(f), which is described
as z1α1 + z2α2 + . . . + zmαm. If z1 ≤

⌈
n
2

⌉
− 1, then this

sum is smaller than that suggested in the lemma. If z1 >⌈
n
2

⌉
− 1, this means the winner c has a score of at most

α1(
⌈
n
2

⌉
− 2) + α2(

⌊
n
2

⌋
+ 1). This score needs to be higher

than z1α1 + z2α2 + . . . + zmαm, but it is lower than the
lemma’s suggested Ln(f), reaching a contradiction.

Corollary 1. If f = Scoringα then (z + 1)Ln(f) ≥
Mn(f) for any z > 1.

Proof. Given a vector α = (α1, . . . , αm) we have that
Mn(f) = nα1. Now, by Lemma 2, we know that

Ln(Scoringα) ≥
(⌈n

2

⌉
− 1
)
α1,

from which the claim trivially follows.

The following lemma tells us the number of districts that
must be won by the winning candidate in a district election
that maximizes MR.

Lemma 3. Let 〈V,C, (≺i)i∈V ,D, f〉 be a district voting
instance which maximizes MR, where f is a scoring rule. z
(number of districts) can be written as `m+r (`, r ∈ N∪{0}
and r < m). There is an MR maximizing instance where
the number of districts that w wins is at most ` + 2, and
every other candidate wins at least `− 1 districts.

Proof. Recall that d(c) be the number of districts that

each candidate c ∈ C wins. In order to win the district

election, w needs to win a plurality of the districts; that is,

d(w) ≥ d(c) + 1 for all c ∈ C \ {w}. Now, let us denote the

score of w from winning a district as xw; by Lemma 1 w gets

no votes from all districts where it loses (the case where there

are two candidates and an even number of districts can be

handled similarly, and is omitted due to space constraints).

Now, p gets a score of xp from a district that w wins, a score

of Mn(f) from a district that it wins, and a score of Ln(f)

from a district that some other candidate wins. Putting it

all together we have:

xpd(w)+Mn(f)d(p)+Ln(f)(
∑
c∈C\{w,p} d(c))

xwd(w)
=

xp
xw

+
Mn(f)d(p)+Ln(f)(

∑
c∈C\{w,p} d(c))

xwd(w)
.

Since d(w) = d(p) + 1,
∑
c∈C\{w,p} d(c) = z − 2d(w) + 1,

hence our equation is

xp +Mn(f)− 2Ln(f)

xw
+

(z + 1)Ln(f)−Mn(f)

xwd(w)
. (1)

We are interested in maximizing (1) as a function of d(w);
the derivative of (1) with respect to d(w) is

(z + 1)Ln(f)−Mn(f)

xw
· 1

−d(w)2

which is positive if and only if (z + 1)Ln(f) < Mn(f). Ac-
cording to Corollary 1, (z + 1)Ln(f) > Mn(f) then (1) is
maximized when d(w) is as small as possible. If r = 0 then
d(w) = `+ 1 while every other candidate gets ` (if d(w) ≤ `
more than one candidate will have such a score). If r ≥ 1,
then d(w) must be more than `+ 1, as more than one can-
didate must get that score, so d(w) = ` + 2 and other can-
didates can get `+ 1 districts or less.

The following lemma discusses the score that w receives
in districts that it wins.

Lemma 4. For every scoring rule f , if n � z, z > 3
(i.e., number of voters in each district is far larger than
the number of districts), the score given to w in districts in
which it wins must be the minimal possible score needed to
win a district in an instance maximizing MR.

Proof. Note that this is not trivial – it is not obvious
that we do not wish to increase w’s score to allow p to receive
a higher score as a 2nd place candidate.



For simplicity, we shall assume n is an odd number and
α1 > α2. The proof is equivalent in the other cases. We
can also assume m > 2, as otherwise this is already set by
Lemma 1.

From Equation 1, we know that we seek to maximize

xp +Mn(f)− 2Ln(f)

xw
+

(z + 1)Ln(f)−Mn(f)

xwd(w)
.

We know Mn(f) = nα1 and Ln(f) = α1(
⌈
n
2

⌉
− 1) +

α2(
⌊
n
2

⌋
+ 1) from Lemma 2, hence we wish to maximize:

xp+nα1−(n−1)α1−(n+1)α2

xw
+

(z+1)(dn2 eα1+bn2 cα2)−nα1

xwd(w)

= xp+α1−(n+1)α2

xw
+

(z+1)(dn2 eα1+bn2 cα2)−nα1

xwd(w)
.

Now, whatever xw is, we wish to maximize xp as long as
xw > xp. For a particular scoring rule f , xp = xw − sn(f)
for some function sn

4. Therefore, looking at the derivative
of our equation according to xw, we get

1
x2w

(
sn(f)− α1 + (n+ 1)α2−

(z+1)(dn2 eα1+bn2 cα2)+nα1

d(w)

)
= 1

x2w

(
sn(f) + α1

n−d(w)−(z+1)dn2 e
d(w)

+

α2
d(w)(n+1)−(z+1)bn2 c

d(w)

)
.

As n � z and z > 3, this is always negative as the α1 and
α2 components overwhelms all others (since sn(f) < nα1),
hence xw needs to be minimal in size.

Lemma 5. For k-approval voting rules, the minimal score
a winner can get in an election is

⌊
nk
m

⌋
+ 1 if m

⌊
nk
m

⌋
+ 1 =

nk. Otherwise, it is
⌈
nk
m

⌉
+ 1.

Proof. Since nk points are allocated by voters, a winner
must have at least a score of

⌊
nk
m

⌋
+ 1. If m

⌊
nk
m

⌋
+ 1 = nk,

then it is possible that w gets
⌊
nk
m

⌋
+ 1 votes, while all

other candidates get
⌊
nk
m

⌋
. If m

⌊
nk
m

⌋
+ 1 < nk, there is

no allocation of nk points such that only a single candidate
gets

⌊
nk
m

⌋
+ 1, hence the winner will need to get one more

point, with the rest of the points to be allocated among the
other candidates, with none of them getting more than

⌈
nk
m

⌉
votes.

Armed with Lemmata 1 – 5, we now proceed to analyze
specific voting rules.

Theorem 1. Suppose that n = qm + s and z = `m + r,
where q, s, `, r ∈ N∪{0} and s, r < m; then MR(V,D,Plurality)
is at least

1 +
n− 2

⌈
n
2

⌉
+ 1

q + 2
+

(z + 1)(
⌈
n
2

⌉
− 1)− n

(`+ 2)(q + 2)

and at most

1 +
n− 2

⌈
n
2

⌉
+ 1

q + 1
+

(z + 1)(
⌈
n
2

⌉
− 1)− n

(`+ 1)(q + 1)
.

In particular, MR(V,D,Plurality) is in Θ(m2).
4Obviously, xw−nmaxi(αi−αi+1) ≤ xp, as xp can always be
ranked below xw. On the other hand, xp ≤ xw −mini(αi −
αi−1).

Proof. By Lemma 3 and Corollary 1, we know that w
wins either ` + 1 or ` + 2 districts. Plugging in the values
Ln(Plurality) =

⌈
n
2

⌉
−1 and Mn(Plurality) = n into (1), we

have that MR(V,D,Plurality) equals

xp + n− 2
⌈
n
2

⌉
+ 2

xw
+

(z + 1)(
⌈
n
2

⌉
− 1)− n

xwd(w)

(xw and xp denote the score of w and p (respectively) when
w wins a district). We are left just with determining the
value of xp and xw. For reasons similar to the ones detailed
in Lemma 1, it holds that xp = xw − 1.

Due to Lemma 4, MR(V,D,Plurality) is maximized when
xw is minimal; We have that w receives q+ 2 votes if s ≥ 2,
and q + 1 otherwise. Plugging this into (1) we obtain the
desired result.

The second expression in the upper bound of Theorem 1,
n−2dn2 e+1

q+1
can be upper bounded by 1

q+1
, which is at most

m
n

. Thus, if the number of voters dominates the number
of candidates, this expression has little effect on MR. The
second expression can be upper bounded as follows

(z + 1)(
⌈
n
2

⌉
− 1)− n

(`+ 1)(q + 1)
≤

zn

(`+ 1)(q + 1)
≤ m2

A similar lower bound of Ω(m2) can be shown as well, which
concludes the proof.

Note that tightness is achieved as our constructed expres-
sions were dependent on particular voting profiles (as de-
scribed in Lemma 1), and hence carry on to these expres-
sions.

As some parliamentary systems require not a plurality of
districts to become a winner, but a majority, we also note
the MR in these cases.

Corollary 2. If the number of districts needed for a vic-
tory is above 50%, MR for plurality is Θ(m).

Proof. Suppose that n = qm + s for q,m ∈ N, s <
m. As d(w) in our expression is now

⌊
n
2

⌋
+ 1, and thanks

to Lemma 4 we know we should minimize xw. Hence, w
receives q+ 2 votes if s ≥ 2, and q+ 1 otherwise. Thanks to
Lemma 1 d(p) =

⌈
n
2

⌉
−1, and its score in the other districts

is xw − 1. The formula turns out to be, for s ≥ 2 (very
similar figure for s ≤ 1):

q + 1

q + 2
+

n(
⌈
n
2

⌉
− 1)

(q + 2)(
⌊
n
2

⌋
+ 1)

n→∞
≈ m.

Theorem 2. Suppose that the number of districts is ex-
pressed as z = `m+ r, where `, r ∈ N∪{0} and r < m; then
MR(V,D, k-approval) for k > 1 is at least

1 +
n(z + `+ 2)− (z − `+ 1)

(`+ 2)(
⌈
nk
m

⌉
+ 1)

and at most

1 +
n(z + `+ 1)− (z − `)

(`+ 1)(
⌊
nk
m

⌋
+ 1)

.

Proof. By Lemma 3 and Corollary 1, we know that w
wins either ` + 1 or ` + 2 districts. Plugging in the values
Ln(k -approval) = n−1 and Mn(k -approval) = n into (1), we

have that MR(V,D, k -approval) equals
xp+2−n
xw

+ kn−(z+1)
xwd(w)



(xw and xp denote the score of w and p (respectively) when
w wins a district).As before, for reasons similar to the ones
detailed in Lemma 1, xp = xw − 1.

Due to Lemma 4, MR(V,D, k -approval) is maximized when
xw is minimal; According to Lemma 5, xw =

⌊
nk
m

⌋
+ 1 if

m
⌊
nk
m

⌋
+ 1 = nk. Otherwise, it is xw =

⌈
nk
m

⌉
+ 1. Plug-

ging these values into the equation, we receive the desired
result.

One of the main challenges in computing a closed form
formula for MR for general scoring rules is that one must
first decide what is the minimal score that w can obtain
while winning a district for a given score vector α. This
problem can be thought of as a bin packing problem: can-
didates can be thought of as bins, and the scores must be
packed into them. It is only recently that a polynomial time
algorithm has been proposed for bin packing problems with
a constant number of types (also commonly referred to as
the one-dimensional cutting stock problem) [21]. Thus, for
general scoring rule we offer looser bounds on the number
of votes needed to win:

Let Sα =
∑m
j=1 αj ; then the minimal number of votes

needed to win a district is at most
⌈
nSα
m

⌉
+α1, and at least⌈

nSα
m

⌉
: we allocate the scores as evenly as possible among

the candidates, and break the tie in favor of the winner
using at most α1 points. Of course, in some cases this can
be improved, but it depends on α, and on the divisibility of
nSα and m. The following theorem uses these loose bounds
to bound MR for the Borda scoring rule.

Theorem 3. MR(V,D,Borda) is in Θ(m2).

Proof. According to Lemma 2, Ln(Borda) = (m−1)(
⌊
n
2

⌋
−

1)+(m−2)(
⌊
n
2

⌋
+1), and Mn(Borda) = n(m−1). We again

write xw and xp to be the number of votes that are won by
w and p (respectively) in a district where w wins. Thus, MR
is

xp + n(m− 1)− 2(m− 2)(n− 1)

xw
+

(z + 1)(m− 1)(m− 2)n

xwd(w)
.

We can also show the score p receives in a district won by
w is at least xw − (m − 1), and at most xw − 1. Further-

more, we observe that xw is at least

⌈
(m−1)(m−2)

2
n

m

⌉
, which

is at least (m−2)2n
2m

. Furthermore, xw is upper bounded by⌈
(m−1)(m−2)

2
n

m

⌉
+ (m − 1), which is at most m(n+2)

2
. Thus,

MR is upper bounded by

2m((m− 2)n(m+ 1)(m− 1) + (m− 1))

(m− 2)2n
.

We note that the final expression has n in both the numera-
tor and denominator and is thus O(m2). We may similarly
lower bound MR(V,D,Borda) by a similar value.

5.2 Copeland
When using the Copeland voting rule, one can get an un-

defined value for MR, as a score of 0 is possible for the
winner.

Example 1. Let us have two identical districts, each con-
taining 21 voters with the preference w � p � a and 20

Algorithm 1 Monte-Carlo MR Approximation

1: procedure Expected-MR ( M , B, ε, δ)

2: s =
⌈
B2·ln 2

δ
2 ε2

⌉
3: T = 0
4: for i = 1 to s do
5: Sample an election outcome E from M
6: w = arg maxc∈C score(c, V ) // The winner
7: sm = maxc∈C score(c, V ) // Maximal score
8: Rsamp

i = sm
sw

// sampled MR

9: T = T +Rsamp
i

10: return r̂ = T
s

// average of sampled MRs

voters who have p � w � a. A third district contains 41
voters with the preference p � w � a. w wins the 2 first
districts, becoming the ultimate winner. But, looking glob-
ally, p’s Copeland score is 2, while w’s Copeland score is 0,
making MR(V,D,Copeland) undefined.

The Copeland score can be additively adjusted by adding
to each candidate’s score a fixed amount that is larger than
m. However, Copeland’s performance remains bad, as is
captured by Theorem 4.

Theorem 4. Under Copeland, the winner w may have
the worst possible Copeland score, while another candidate
has the best possible Copeland score.

Proof. The worst possible Copeland score is −(m− 1),
while the best is m − 1. Taking z = `m + r, z > 4 and
m > 2, we take ` + 2 districts, in each of them all voters
rank w � p � . . .. We now take ` + 1 districts, in each of
them all voters rank p � . . . � w. Finally, the rest of the
districts are divided between the m − 2 other candidates,
each candidate c ∈ C \{p, w} getting at most `+ 1 districts,
in which every voter ranks c � p � . . . � w. Since `+2 < n

2
,

w has lost to all candidates for most voters, and therefore
w’s Copeland score is −(m − 1). p, on the other hand, is
preferred by most voters over any other candidate, leading
its score to be m− 1.

6. THE MISREPRESENTATION RATIO UN-
DER UNCERTAIN VOTES

In Section 5 we established bounds on the misrepresen-
tation ratio by constructing pathological examples: settings
where districting effects were so pronounced as to cause an
extremely unpopular candidate to win the elections, despite
the existence of a clearly better alternative. We now take
the average-case, rather than the worst-case, approach, and
ask how common are instances where misrepresentation is
high.

We do this in the form of a probabilistic generative model,
utilizing partial information to inform our assumptions on
the general population. Any instantiation of the model is a
voting domain for which we can compute the misrepresenta-
tion ratio. Thus, MR is a random variable and we evaluate
the expected MR. A naive solution is to exhaustively search
over the space of possible election outcomes; for each such
outcome we can compute its probability of occurring under
the generative model, and the MR value for that outcome;
we can then sum the product of the two across all outcomes
to get the expected MR. However, such an exhaustive search



is intractable, as the space of outcomes can be prohibitively
large, especially when there are many candidates, voters and
districts. We propose an alternative approximate solution,
based on a Monte-Carlo algorithm. Our algorithm requires
a bound on the MR for the examined domain, and such can
be found for many cases (see previous section).

We assume the generative model is given in the form of a
black-box, which outputs a sampled election outcome, con-
sisting of the votes of every voter in every district. We fur-
ther assume that the winner of the election can be computed
in polynomial time5. Denote the generative model asM , and
by r = EM (MR) the expectation of MR under the model
M . Our proposed algorithm is“probably approximately cor-
rect”: given two parameters, ε and δ, the algorithm returns
an approximation r̂ to r, such that with high probability 1−δ
the returned value r̂ is very close to r, so that |r̂ − r| ≤ ε.
The running time of the algorithm depends on ε and δ; it is
quadratic in 1

ε
and logarithmic in 1

δ
.

Our proposed algorithm is a Monte-Carlo algorithm, but
it is only appropriate to voting rules where there is a known
bound on the possible MR values. 6 The minimal MR value
is 1 (as this is the ratio between the maximal score of any
candidate and the score of a specific candidate, namely the
winner). Given a bound H on the maximal MR in a domain,
we refer to the MR value range as B = H − 1. The runtime
of our algorithm is quadratic in B. The method is given in
Algorithm 1, and we provide a proof for its correctness.

Theorem 5. The value returned by Expected-MR is an
ε, δ approximation for the expected MR under M : with prob-
ability at least 1− δ the returned value r̂ is within a distance
ε of r = EM (MR), i.e: |r̂ − r| ≤ ε.

Proof. We note that the Rsamp
i computed inside the loop

is the MR in a specific instantiation of an election outcome
E sampled from the generative model M (see Definition 2),
so each Rsamp

i is a random variable, whose expectation is
r = EM (MR) (i.e. E[Rsamp

i ] = r). Our algorithm computes
T =

∑s
i=1R

samp
i , the sum of s i.i.d draws, each of which

has a value of r in expectation, so E[r̂] = E[T
s

] = r. We
use Hoeffding’s inequality [24] to show that the number of
samples s that we use achieves the desired accuracy ε and
confidence δ. Hoeffding’s inequality states that if R1, . . . , Rn
are independent random variables, where each Ri is bounded
so that Ri ∈ [ai, bi], and if T =

∑s
i=1Ri, then Pr(|T −

E[T ]| ≥ sε) ≤ 2 exp
(
− 2 s2 ε2∑n

i=1(bi−ai)
2

)
.

Rsamp
i is the MR in an election outcome obtained under

the generative model M , so Rsamp
i is bounded in the range

[1, H] (i.e., by our assumption, the MR value range is B =

H−1). Applying Hoeffding’s bound and substituting
B2·ln 2

δ
2 ε2

for s, we get Pr
(∣∣∣Ts − E[T ]

r

∣∣∣ ≥ ε) ≤ δ as required.

7. SIMULATIONS
We now use our Algorithm Expected-MR to analyze the

MR in several voting domains. We begin with a noisy ver-
sion of the example domain described in the introduction.

5Not all voting rules admit a polynomial winner determina-
tion algorithm. As our algorithm samples election outcomes,
its runtime in this case would not be polynomial.
6Our method is akin to Monte-Carlo methods used for an-
alyzing voting under various forms of uncertainty [14, 2, 4,
5].
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Figure 1: The effects of the noise on the MR

We fix C = {w, p}, and the number of districts to 11: 6
districts of type “A” and 5 of type “B”, modeling heteroge-
neous and homogenous districts respectively. In type A dis-
tricts, every voter v votes randomly with Pr[v votes for w] =
1
2

+ ε, and Pr[v votes for p] = 1
2
− ε; in type B districts,

Pr[v votes for w] = ε, Pr[v votes for p] = 1 − ε, for ε ∈(
0, 1

2

)
. Figure 1 shows the averaged MR as a function of

the noise ε (x-axis). Each point is average MR obtained
for many elections sampled using this probabilistic model;
MR first increases as the noise ε grows, until it reaches a
sweet-spot from which it drops. This indicates that for some
models the model noise may not have a monotone effect on
the MR.

In our second experiment, we fix the number of districts
to 15, and range the number of voters in every district
from 100 to 5000. We examined MR of elections with m ∈
{3, 4, . . . , 7} candidates. Figure 2a shows the averaged MR
where the preference of every voter in every district is uni-
formly drawn from the set of all m! possible orders of can-
didates, under Borda scoring. The figure shows that in-
creasing the number of voters tends to lower MR. This is
not surprising, as all candidates will likely have nearly the
same score. Next, we consider the Mallows model [30] for
generating voter preferences, where we assume that there
is a “ground truth” for every district, σ∗ (representing the
common ranking of candidates in that district) and disper-
sion parameter φ ∈

(
1
2
, 1
]
. Under the Mallows model every

voter compares every pair of candidates independently and
ranks them correctly (according to σ∗) with probability φ.
For every district, σ∗ was drawn uniformly at random and
φ ∼ U( 1

2
, 1). We used the plurality scoring rule (Figure 2b)

and Copeland voting rule (Figure 2c). As predicted by our
theoretical results, MR grows when there are more candi-
dates. Under Copeland, a fixed amount of m was added
each candidate’s score so that MR would be positive.

Our simulation results indicate that voting misrepresen-
tation may occur in several natural domains. Our second
experiment is “fair” in the sense that there is no preferred
candidate, and yet the MR values are quite high. Also, our
theoretical results agree with experiments in some natural
domains.

8. CONCLUSIONS
This work analyzes district-based elections. We demon-

strate the representability issues that arise in such elections,
and show tight bounds on misrepresentation. We further
show that misrepresentation is a common occurrence under
various natural voter distributions, and that its effect may
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Figure 2: Simulations results

not diminish even when the number of voters is large.
District based elections tend to under-represent smaller

parties; this is a long observed phenomenon (and, in some
countries, a welcome stabilizing feature). However, we do
not focus on smaller parties, but rather show that the pref-
erences of large majorities may be completely unrepresented
(the UK elections of 1951, where the Labour party with
48.8% support lost the elections, and the Conservative party
with 44.3% not only beat it, but had a strong parliamentary
majority, is just one example of these occurrences).

Research into the institutional bias in voting procedures,
beyond control issues, is one which we think deserves more
attention by the computational social choice community.
Very few election systems in the world are proportional,
and the effect this has on the expression of voters’ views
has mostly focused (in political science research) on how
small minorities are hurt. As our analysis shows, large ma-
jorities may also be affected. Further research is needed
with regards to other voting methods. Moreover, further
and complementary concepts may be developed, indicating
unfairness, lack of representation and other problems with
various voting procedures (parliamentary entrance bounds,
common in some countries, are an obvious candidate for
such directions). In addition, while we have focused on an
outcome of a single winner, a coalitional analysis of district
settings may also be of interest.
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