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ABSTRACT
Kidney exchanges are organized markets where patients swap will-
ing but incompatible donors. In the last decade, kidney exchanges
grew from small and regional to large and national—and soon, in-
ternational. This growth results in more lives saved, but exacerbates
the empirical hardness of the NP-complete problem of optimally
matching patients to donors. State-of-the-art matching engines use
integer programming techniques to clear fielded kidney exchanges,
but these methods must be tailored to specific models and objective
functions, and may fail to scale to larger exchanges. In this paper,
we observe that if the kidney exchange compatibility graph can be
encoded by a constant number of patient and donor attributes, the
clearing problem is solvable in polynomial time. We give neces-
sary and sufficient conditions for losslessly shrinking the represen-
tation of an arbitrary compatibility graph. Then, using real com-
patibility graphs from the UNOS nationwide kidney exchange, we
show how many attributes are needed to encode real compatibil-
ity graphs. The experiments show that, indeed, small numbers of
attributes suffice.

1. INTRODUCTION
There are over 100,000 needy patients waiting for a kidney trans-

plant in the United States, with similar, and increasing, demand
worldwide.1 Complementing potential cadaveric transplantation
via the deceased donor waiting list, a recent innovation—kidney ex-
change [30, 32]—allows patients with willing living donors to par-
ticipate in cyclic donor swaps or altruist-initiated donation chains
to receive a life-saving organ. Kidney exchange now accounts for
roughly 10% of living donation in the US, with that percentage in-
creasing every year.

In reality, participating patients and donors are endowed with
a set of attributes: blood type, tissue type, age, insurance, home
transplant center, willingness to travel, and myriad other measure-
ments of health, personal preference, and logistical constraint. While
some of these features can, at a cost, be temporarily or permanently
changed, the attributes determine the feasibility of a potential do-
nation from each donor to each patient. As a concrete example, a
donor with blood type AB can only give to a patient with that blood
type.

A central aspect of kidney exchange is the clearing problem,
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that is, determining the “best” set of cyclic and chain-based swaps
to perform in a given compatibility graph, which consists of all
participating patients, donors, and their potential feasible transac-
tions. For even simple (but realistic) models of kidney exchange,
the clearing problem isNP-hard [1, 6] and also extremely difficult
to solve in practice [18, 3, 29].

In this paper, we tackle the complexity of the clearing problem
via the introduction of a novel model for kidney exchange that ex-
plicitly takes into account all attributes of the participating patients
and donors. Under the assumption that real kidney exchange graphs
can be represented using just a constant number of attributes, we
show that our model permits polynomial-time solutions to central
NP-hard problems in general kidney exchange. Inspired by classi-
cal results from intersection graph theory, we give conditions on the
representation of arbitrary graphs in our model, and generalize to
the case where participants are allowed to have a thresholded num-
ber of negative interactions between attributes. Noting that real-life
kidney exchange graphs are not arbitrary, we show on actual data
from the United Network for Organ Sharing (UNOS) US-wide kid-
ney exchange that our model permits lossless representation of true
graphs with far fewer attributes than the worst-case theoretical re-
sults require.

2. A NEW MODEL FOR KIDNEY EXCHANGE
In this section, we formalize our model of kidney exchange. We

prove that under this model certain well-knownNP-hard problems
in general kidney exchange are solvable in polynomial time. We
also show that, given a compatibility graph, determining the best
set of attributes to change (at some cost) is solvable in polynomial
time.

2.1 Notation & Preliminaries
A kidney exchange can be represented by a directed compati-

bility graph G = (V,E). Each patient-donor pair, or unpaired
altruistic donor, forms a vertex v ∈ V , and a directed edge exists
from one vertex to another if the donor at the former can give to the
patient at the latter, i.e., are compatible [32, 33, 34].

In kidney exchange, patients and donors participate in cycles or
chains. In a cycle, each participating vertex receives the kidney of
the previous vertex. All transplants in a cycle must be performed
simultaneously to ensure participation, and thus are limited to some
small length in practice. This ensures that no donor backs out after
her patient has received a kidney but before she has donated her
kidney. Most fielded kidney exchanges—including UNOS—allow
only 2- and 3-cycles. In a chain, a donor without a paired pa-
tient enters the pool, donating his kidney to a patient, whose paired
donor donates his kidney to another patient, and so on [27, 35, 31].
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Chains can be executed non-simultaneously2 and thus chains can
be longer (but typically not infinite) in length. Most exchanges—
including UNOS—see great gains through the use of such “altruist-
initiated” chains.

We consider a model that imposes additional structure on an ar-
bitrary compatibility graph. For each vertex vi ∈ V , associate with
its constituent donor and patient attribute vectors di and pi, re-
spectively. Here, the qth element dqi of di takes on one of a fixed
number of types—for example, one of four blood types (O, A, B,
AB), or one of a few hundred standard insurance plans. Then, for
vi 6= vj ∈ V , we define a compatibility function f(di,pj), a
boolean function that returns the compatibility of the donor of vi
with the patient of vj .

Given V and associated attribute vectors, we can uniquely deter-
mine a compatibility graph G = (V,E) such that E = {(vi, vj) :
f(di,pj) = 1 ∀vi 6= vj ∈ V }. We claim that this model accu-
rately mimics reality, and we later support that claim with strong
experimental results on real-world data. Furthermore, under this
new model, certain complexity results central to kidney exchange
change (for the better), as we discuss next.

2.2 The Clearing Problem is Easy (in Theory)
We now tackle the central computational challenge of kidney ex-

change: the clearing problem. Well-known to be NP-hard [1, 6],
a variety of custom clearing algorithms address adaptations of the
clearing problem in practice.3 We show that, in our model, the
clearing problem itself is solvable in polynomial time.

Formally, we are interested in a polynomial-time algorithm that
solves the L-CYCLE-COVER problem—that is, finding the largest
disjoint packing of cycles of length at most L. For ease of expo-
sition, in this section we use “cycles” to refer to both cycles and
chains; indeed, it is easy to see that altruist donors are equivalent to
standard patient-donor pairs with a patient who is compatible with
all non-altruist vertices in the pool. Then, a chain is equivalent to
a cycle with a “dummy” edge returning to the altruist. Also, again
for ease of exposition, we assume the value of a chain of length L
is equal to a cycle of length L, due to the donor at the end of the
chain giving to a patient on the deceased donor waiting list.

Recall that we are working in a model where each vertex vi
belongs to one of a fixed number of types determined solely by
its attribute vectors di and pi. Let Θ be the set of all possible
types, and θ ∈ Θ represent one such individual type. Then, with a
slight abuse of notation, we can define a type compatibility function
f(θ, θ′) = 1 if and only if there is a directed edge between vertices
of type θ and θ′. (Note that this captures chains and altruist donors
as described above.)

A key observation of this section is that any additional edge
structure that is imposed on the graph—such as a cycle cover—
would be independent of the identity of specific vertices, rather, it
would only depend on their types, as vertices of the same type have
the exact same incoming and outgoing neighborhoods. For exam-
ple, in any cycle cover, if vi and vj are two vertices of the same
type, we can insert vj in place of vi, and vi in place of vj , and ob-
tain a feasible cycle cover of the same size. This observation drives
our theoretical algorithmic results.

In more detail, for a vector of types θ = (θ1, . . . , θk) ∈ Θk, let

2To see why this is, take the case where a donor backs out of a
chain after his paired patient received a kidney, but before his own
donation. Unlike in the case of a broken cycle, no pair in the re-
maining tail of the planned chain is strictly worse off; that is, no
donor was “used up” before her paired patient received a kidney.
3For an overview of practical approaches to solving the clearing
problem, see a recent survey due to Mak-Hau [25].

us denote fC(θ) = 1 if and only if f(θt, θt+1) = 1 for all t < k,
and f(θk, θ1) = 1. In other words, fC(θ) = 1 if every k vertices
i1, . . . , ik of types θ1, . . . , θk, respectively, are involved in a cycle
in the graph. Furthermore, for L ≤ n = |V |, denote

T (L) = {θ ∈ Θk : k ≤ L and fC(θ) = 1}.

That is, T (L) contains all vectors of types that induce feasible cy-
cles of length at most L.

Now consider the following algorithm for L-CYCLE-COVER in
our model:

Algorithm 1 L-CYCLE-COVER

1. C∗ ← ∅

2. for every collection of numbers {mθ}θ∈T (L) such that∑
θ∈T (L) mθ ≤ n

• if there exists cycle cover C such that ‖C‖V > ‖C∗‖V
and for all θ ∈ T (L), C contains mθ cycles consisting of
vertices of the types in θ then C∗ ← C

3. return C∗

Here, ‖C‖V denotes the number of unique vertices matched in a
cycle cover C. We claim that, in our setting, Algorithm 1 is optimal
and computationally efficient.

THEOREM 1. Suppose that L and |Θ| are constants. Then Al-
gorithm 1 is a polynomial-time algorithm for L-CYCLE-COVER.

PROOF. We start by verifying that Algorithm 1 is indeed opti-
mal. Consider the optimal cycle cover C∗. For each θ ∈ T (L),
let m∗θ be the number of cycles in C∗ that are consistent with the
types in θ. Clearly

∑
θ∈T (L) m

∗
θ ≤ n, as there are only n vertices

so there cannot be more than n cycles (in fact, n/2 is also a valid
upper bound). Therefore, Algorithm 1 considers the collection of
numbers m∗θ in Step 2. Because this collection of numbers does
induce a valid cycle cover that is of the same size as C∗, the algo-
rithm would update its incumbent cycle cover if it was not already
optimal.

We next analyze the running time of the algorithm. First, note
that it is straightforward to check whether the numbers {mθ}θ∈T (L)

induce a valid cycle cover. Since T (L) consists only of valid cycles
according to the compatibility function fC , we just need to check
that there are enough vertices of type θ to construct all the cycles
that require them. This simply amounts to multiplying each mθ

by the number of times type θ appears in θ, and verifying that the
sum of these products over all θ in T (L) is at most the number of
vertices of type θ.

Second, we argue that there is only a polynomial number of pos-
sibilities to construct a collection of numbers {mθ}θ∈T (L) such
that

∑
θ∈T (L) mθ ≤ n. Indeed, this number is at most (n +

1)|T (L)|. Moreover, |T (L)| ≤ L · |Θ|L. Because |Θ| and L are
constants, |T (L)| is also a constant. The expression (n+ 1)|T (L)|

is therefore a polynomial in n.

Even for constantL, the running time of Algorithm 1 is exponen-
tial in k. But this is to be expected. Indeed, any graph can trivially
be represented using a set Θ of types of size n, where each vertex
has a unique type, and a compatibility function fC that assigns 1
to an ordered pair of types if the corresponding edge exists in G.
Therefore, if the running time of Algorithm 1 were polynomial in
n and k, we could solve the general L-CYCLE-COVER problem in
polynomial time—and that problem isNP-hard [1].



2.3 Flipping Attributes is Also Easy (in The-
ory)

While patients and donors in a kidney exchange are endowed
with an initial set of attributes, it may be possible in practice to—at
a cost—change some number of those attributes to effect change in
the final matching. For example, the human body naturally tries to
reject, to varying degrees, a transplanted organ. Due to this, nearly
all recipients of kidneys are placed on immunosuppressant drugs
after transplantation occurs.4 However, preoperative immunosup-
pression can also be performed to increase transplant opportunity—
but at some cost to the patient’s overall health.

With this in mind, we extend the model of Section 2.2 as follows.
Associate with each pair of types θ, θ′ ∈ Θ a cost function c :
Θ × Θ → R representing the cost of changing a vertex of type θ
to type θ′. Then, the L-FLIP-AND-CYCLE-COVER problem is to
find a disjoint packing of cycles of length at most L that maximizes
the size of the packing minus the sum of costs spent changing types.
Building on Theorem 1, this problem is also solvable in polynomial
time.

THEOREM 2. Suppose that L and |Θ| are constants. Then L-
FLIP-AND-CYCLE-COVER is solvable in polynomial-time.

PROOF PROOF SKETCH. For any type θi ∈ Θ, there are ni
vertices. Then, for each of the (|Θ| − 1) choices of which type
θ 6= θi to switch to, choose how many vertices from θi will switch
to a different type; there are (ni + 1) choices. Do this for all |Θ|
types, resulting in

∏
θi∈Θ[(ni + 1)(|Θ| − 1)] choices. Note that∑

θi∈Θ(ni+1) = n+ |Θ|, meaning
∏
θi∈Θ[(ni+1)(|Θ|−1)] ≤

((n + |Θ|) · (|Θ| − 1)/|Θ|)|Θ| ≤ (n + |Θ|)|Θ|. Since |Θ| is
a constant, this is polynomial in n; invoking an adaptation of the
polynomial time Algorithm 1 that subtracts out c(θ, θ′) for every
vertex that switches from θ to θ′, for each of the polynomially-
many choices, concludes the proof.

3. A CONCRETE INSTANTIATION:
THRESHOLDING

As motivated in Sections 1 and 2, compatibility in real kidney
exchange graphs is determined by patient and donor attributes, such
as blood or tissue type. In particular, if an attribute for a donor and
patient is in conflict, they are deemed incompatible. Motivated by
that reality, in this section, we associate with each patient and donor
a bit vector of length k, and count incompatibilities based on any
shared activated bits between a patient and potential donor.

As a concrete example, consider human blood types. At a high
level, human blood contains A antigens, B antigens, both (type
AB), or neither (type O). AB-type patients can receive from any
donor, A-type (B-type) can receive from O-type and A-type (B-
type) donors, and O-type patients can only receive from O-type
donors. In our bit model, this is represented with k = 2, such that
a donor’s first (resp. second) bit is set if his blood holds A (resp. B)
antigens. and a patient’s first (resp. second) bit is set if she cannot
receive from blood containing A (resp. B) antigens. Thus, the type
space Θ = 2{has-A,has-B} × 2{no-A,no-B}; in general, |Θ| = 22k.

Formally, unless otherwise stated, throughout this sectionG will
refer to a directed graph with vertex set V = [n] := {1, . . . , n}
and edge set E, and with each i ∈ V associated with two k-bit
vectors di,pi ∈ {0, 1}k. Let Qd(i) = {q ∈ [k] : diq = 1} be the
set of conflict bits for the donor associated with vertex i ∈ V , and
similarly let Qp(i) = {q ∈ [k] : piq = 1}. For i, j ∈ V such that

4
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i 6= j, the threshold feasibility function f tthresh is defined as

f tthresh(di,pj) =

{
1 if |Qd(i) ∩Qp(j)| ≤ t,
0 otherwise.

.

Note that |Qd(i) ∩Qp(j)| ≤ t if and only if 〈di,pj〉 ≤ t.
Kidney exchange graphs constructed using threshold compati-

bility functions are closely related to complements of intersection
graphs [26], which are graphs that have a set associated with each
vertex and an edge between two vertices if and only if the sets in-
tersect. Given a nonnegative integer t, the function f tthresh is related
to p-intersection graphs [9, 13], in which an edge exists between
two vertices if their corresponding sets intersect in at least p ≥ 1
elements.

Our model is similar to that of intersection digraphs [36], or
equivalently bipartite intersection graphs [19], both also consid-
ered in [28]. Both of these have mainly been studied under the
assumption that the sets used to represent the graph have the “con-
secutive ones” property, i.e., each set is an interval from the set of
integers. Our model is more general: we do not place such an as-
sumption on the set of conflict bits. Moreover, most treatments of
intersection digraphs consider loops on the vertices, whereas in the
thresholding model we have defined, whether or not donor i and
patient i are compatible is not considered. In addition, the directed
and bipartite intersection graph literature has focused on the case
that t = 0 (in our terminology). To the best of our knowledge, this
paper is the first treatment p-intersection digraphs, and certainly
their first real-world application.

3.1 Existence of Small Representations
It is natural to ask for what values of t and k can we select ver-

tices with bit vectors di and pi of length k such that f tthresh can
create any graph of a specific size?

Formally, we say that G is (k, t)-representable (by feasibility
function f tthresh) if, for all i ∈ V there exist di,pi ∈ {0, 1}k such
that for all j1 ∈ V , j2 ∈ V \ {j1}, (j1, j2) ∈ E if and only if
f tthresh(dj1 ,pj2) = 1.

It is known [14] that any graph can be represented as an inter-
section graph with k ≤ n2/4. In contrast, the next theorem shows
that, in our model, k ≤ n suffices to represent any graph. It is
akin to a result on the term rank of the adjacency matrix of G [28,
Theorem 6.6].

THEOREM 3. Let G = (V,E) be a digraph on n vertices. Let
n1 be the number of vertices with outgoing edges, Let n2 be the
number of vertices with incoming edges, and n′ = min{n1 +
1, n2 + 1, n}. Then G can be (n′, 0)-represented.

PROOF. We first show that the graph can be (n1+1, 0)-represented.
Assume without loss of generality that vertices 1, . . . , n1 have out-
going edges. We show how to set di,pi ∈ {0, 1}n1+1 for each
vertex i in V . To set the donor attributes, for each i ∈ [n1], let
di be ei, the ith standard basis vector, i.e., the vector of length
n1 + 1 with a 1 in the ith coordinate and 0 everywhere else. For
i > n1, set di to be en1+1. For the patient attributes of vertex
j ∈ [n], for each i ∈ [n] such that (i, j) ∈ E, set pji = 0, and
set pji = 1 otherwise. Note that if all the vertices have outgoing
edges, then n1 = n unit vectors suffice. A similar approach works
to (min{n, n2 + 1}, 0)-represent G, by using the n2 unit vectors
as the patient vectors of those vertices with incoming edges, and (if
needed) one additional unit vector for any remaining vertices. In
both of these cases, 〈di,pj〉 = 0 if and only if (i, j) ∈ E, which
represents G by f0

thresh.
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Theorem 3 implies that any graph is (n, 0)-representable. The
next theorem shows a matching lower bound. The same construc-
tion and bound also hold if loops are considered [36].

THEOREM 4. For any n ≥ 3, there exists a graph on n vertices
that is not (k, 0)-representable for all k < n.

PROOF. DefineG to be the digraph on n vertices, V = [n], with
an edge from vertex i, for each i ∈ V , to every vertex except i− 1
(and itself), where vertex n is also referred to as vertex 0.

Assume that G is (k, 0)-representable, and consider vertex 1.
Since (1, n) /∈ E, and (i, n) ∈ E for all i /∈ {1, n}, there exists a
conflict bit q1 ∈ Qd(1) ∩ Qp(n) such that q1 /∈ Qp(V \ {1, n}).
More generally, there exists such a conflict bit qi for all i ∈ V .

We claim that these conflict bits are all unique, which directly
implies that k ≥ n. Indeed, otherwise we can assume that q1 = qi
for some i 6= 1 (without loss of generality, as the graph is symmet-
ric subject to cyclic permutations). But then (1, i−1) and (i, n) do
not appear as edges inG, which is not true for any i ∈ V \{1}.

More generally, it is easy to see that any graph that is (k, 0)-
representable is also (k+ t, t)-representable for any t ≥ 0. Indeed,
simply take the (k, 0)-representation of the graph, and append t
ones to every vector. Together with Theorem 3, this shows that any
graph is (n + t, t)-representable. However, the lower bound given
by Theorem 4 does not extend to t > 0. We conjecture that for any
n and t there exists a graph that can only be (k, t)-represented with
k = Ω(n)—this remains an open question.

3.2 Computational Issues
Given any real compatibility graph with n vertices, we know by

Theorem 3 that we can (k, 0)-represent that graph for k = n. But,
in practice, how large of a k do we actually need?

Various problems related to intersection graphs areNP-complete
for general graphs [23, 28], but we work in a setting with addi-
tional structure. And while we do not show that finding a (k, t)-
representation isNP-hard, we do show that a slightly harder prob-
lem, which we refer to as (k, t)-REPRESENTATION WITH IGNORED
EDGES, is NP-hard. Given an input of a directed graph G =
(V,E), a subset F of

(
V
2

)
, and integers k ≥ 1 and t ≥ 0, this

problem asks whether there exist bit vectors di and pi of length k
for each i ∈ V such that for any (i, j) ∈ F , we have (i, j) ∈ E if
and only if 〈di,pj〉 ≤ t.

THEOREM 5. The (k, t)-REPRESENTATION WITH IGNORED EDGES
problem isNP-complete.

The theorem’s nontrivial proof is omitted due to lack of space.5

Here we give a proof sketch. One major idea is the construction
of a bit-grounding gadget Gk—a subgraph where the bits are set
uniquely (up to permutations) in any valid representation, and can
be used to set the bits in other vertices. The gadget has

(
k
2

)
ver-

tices; we prove that there is a unique (up to permutations) (k, 1)-
representation of Gk, where each donor vector has a unique pair of
ones, and similarly for each patient vector. Figure 5 shows G4.

Then, we prove NP-hardness by reduction from 3SAT. In the
constructed instance of our problem, we set the threshold to 1. The
crux of the reduction is to add a vertex for each clause in the given
3SAT formula, where in the patient vector, the bit corresponding
to each literal in the clause is set to 1. This can be done by con-
necting the vertex to the bit-grounding gadget. Moreover, there is
a special vertex that does not have outgoing edges to any of the
clause vertices. This means that it must have a 1 in a position that
5The complete proof is given in Appendix A.

corresponds to one of the literals in each clause. A different part of
the construction ensures that there is at most a single 1 in the two
positions corresponding to a variable and its negation. Therefore,
a valid assignment of the donor bits corresponds to a satisfying as-
signment for the 3SAT formula.

1

2

3

4

1

d1 : 1100
p1 : 1010

2

d2 : 1010
p2 : 1001

3
d3 : 1001
p3 : 0110

4

d4 : 0110
p4 : 0101

5

d5 : 0101
p5 : 0011

6
d6 : 0011
p6 : 1100

Figure 1: Gadget G4 with a subset of non-edges shown; all edges
between circle vertices (those in G2

4) are also not in E.

4. COMPUTING SMALL REPRESENTATIONS
OF REAL KIDNEY EXCHANGE COM-
PATIBILITY GRAPHS

In this section, we test our hypothesis that real compatibility
graphs can be represented by a substantially smaller number of at-
tributes than required by the worst-case theoretical results of Sec-
tion 3. We begin by presenting general mathematical programming
techniques to determine, given k, t ∈ Z, whether a specific graph
G = (V,E) is (k, t)-representable. We then show on real and gen-
erated compatibility graphs from the UNOS US-wide kidney ex-
change that small k suffices for (k, 0)-representation, and conclude
by exploring the allowance of greater thresholds t on match size.
We find even small thresholds t > 0 result in substantial societal
gain.6

4.1 Mathematical Programming Formulations
Implementation of f tthresh can be written succinctly as a quadratically-

constrained discrete feasibility program (QCP) with 2k|V | binary
decision variables, given as M1 below.

〈di,pj〉 ≤ t ∀(vi, vj) ∈ E
〈di,pj〉 ≥ (t+ 1) ∀(vi, vj) 6∈ E
di,pi ∈ {0, 1}k ∀vi ∈ V

(M1)

The constraint matrix for this program is not positive semi-definite,
and thus the problem is not convex. Exploratory use of heuris-
tic search via state-of-the-art integer nonlinear solvers [7] resulted
in poor performance (in terms of runtime and solution quality) on
even small graphs. With that in mind, and motivated by the pres-
ence of substantially more mature integer linear program (ILP)
solvers, we linearize M1, presented as M2 below.

6All code for this section can be found at https://github.
com/JohnDickerson/KidneyExchange.
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min
∑
vi∈V

∑
vj 6=vi∈V ξij

s.t. dqi ≥ c
q
ij ∧ p

q
j ≥ c

q
ij ∀vi 6= vj ∈ V, q ∈ [k]

dqi + pqj ≤ 1 + cqij ∀vi 6= vj ∈ V, q ∈ [k]∑
q c
q
ij ≤ t+ (k − t)ξij ∀(vi, vj) ∈ E∑
q c
q
ij ≥ (t+ 1)ξij ∀(vi, vj) ∈ E∑

q c
q
ij ≥ t+ 1− kξij ∀(vi, vj) 6∈ E∑

q c
q
ij ≤ k − (k − t)ξij ∀(vi, vj) 6∈ E

dqi , p
q
i ∈ {0, 1} ∀vi ∈ V, q ∈ [k]

cqij , ξij ∈ {0, 1} ∀vi 6= vj ∈ V, q ∈ [k]

(M2)

M2 generalizes M1; while M1 searches for a feasible solution to
the (k, t)-representation problem, M2 searches for the “best” (pos-
sibly partially-incorrect) solution by minimizing the total number
of edges that exist in the solution but not in the base graph G, or do
not exist in the solution but do in G. This flexibility may be desir-
able in practice to strike a tradeoff between small k and accuracy
of representation.

Interestingly, neither the fully general ILP nor its (smaller) in-
stantiations for the special cases of feasibility and/or threshold t =
0 were solvable by a leading commercial ILP solver [22] within 12
hours for even small graphs, primarily due to the model’s loose LP
relaxation. Indeed, the model we are solving is inherently logical,
which is known to cause such problems in traditional mathemati-
cal programming [21]. With that in mind, we note that the special
case of t = 0 can be represented compactly as a satisfiability (SAT)
problem in conjunctive normal form, given below as M3.

∧
q∈[k]

(¬dqi ∨ ¬p
q
j ) ∀(vi, vj) ∈ E

(z1
ij ∨ z2

ij ∨ . . . ∨ zkij) ∧∧
q∈[k]

[
(¬zqij ∨ d

q
i ) ∧ (¬zqij ∨ p

q
j )
]

∀(vi, vj) 6∈ E
(M3)

This formulation maintains two sets of clauses: the first set en-
forces no bit-wise conflicts for edges in the underlying graph, while
the second set enforces at least one conflict via k auxiliary variables
z·ij for each possible edge (vi, vj) 6∈ E. M3 was amenable to par-
allel SAT solving [5]. Next, we present results on real graphs using
this formulation.

4.2 (k, 0)-representations of Real Kidney Ex-
change Graphs

Can real kidney exchange graphs be represented by a small num-
ber of attributes? To answer that question, we begin by testing on
real match run data from the first two years of the United Network
for Organ Sharing (UNOS) kidney exchange, which now contains
143 transplant centers, that is, 60% of all transplant centers in the
US. We translate each compatibility graph into a CNF-SAT formu-
lation according to M3, and feed that into a SAT solver [5] with
access to 16GB of RAM, 4 cores, and 60 minutes of wall time.
(Timeouts are counted—conservatively against our paper’s qualita-
tive message—as negative answers.)

Figure 2 shows a classical phase transition from unsatisfiability
to satisfiability as k increases as a fraction of graph size, as well
as an associated substantial increase in computational intractability
centered around that phase transition. This phenomenon is com-
mon to many central problems in artificial intelligence [8, 20, 38].
Indeed, we see that substantially fewer than |V | attributes are re-
quired to represent real graphs; compare with the lower bound of
Theorem 4.

Figure 3 explores the minimum k required to represent each
graph as a function of |V |, compared against the theoretical up-
per bound of k = |V |. The shaded area represents those values of
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Figure 2: Classical hardness spike near the phase transition for
(k, 0)-representation on real UNOS compatibility graphs.

k where the SAT solver timed out; thus, the reported values of k
are a conservative upper bound on the required minimum, which is
still substantially lower than |V |.
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Figure 3: Comparison of number of bits (y-axis) required to (k, 0)-
represent real UNOS compatibility graphs of varying sizes (x-axis).
The theoretical bound of k = |V | is shown in red; it is substantially
higher than the conservative upper bound of k solved by our SAT
solver (upper dotted line).

4.3 Thresholding Effects on Matching Size
One motivation of this work is to provide a principled basis for

optimally “flipping bits” of participants (via, e.g., immunosuppre-
sion) in fielded kidney exchanges, in the hope that additional edges
in the compatibility graph will result in gains in the final algorith-
mic matchings. We now explore this line of reasoning—that is, in-
creasing the t in f tthresh instead of the k, which is now endogenous
to the underlying model—on realistic generated UNOS graphs of
varying sizes.

Figure 4 shows the effect on the percentage of patient-donor
pairs matched by 2- and 3-cycles as a global threshold t is raised
incrementally from t = 0 (the current status quo) to t = 5. In-
tuitively, larger compatibility graphs result in a higher fraction of
pairs being matched; however, a complementary approach—making



the graph denser via even small increases in t—also results in tremen-
dous efficiency gains of 3–4x (depending on |V |) over the baseline
for t = 1, and quickly increasing to all pairs being matched by
t = 5.
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Figure 4: Pairs matched (%, y-axis) in generated UNOS graphs of
varying sizes (lines), as t increases (x-axis).

We note that any optimal matching found after increasing a global
threshold t could also be created by paying to change at most t
bits per vertex in a graph; however, the practical selection of the
minimum-sized set of at most t bits per vertex such that the size
of the resulting optimal matching is equal to that found under the
global threshold of t is a difficult two-stage problem and is left as
future research. The large efficiency gains realized by moving from
f0

thresh to even f1
thresh motivate this direction of research.

5. CONCLUSIONS & FUTURE RESEARCH
Motivated by the increasing size of real-world kidney exchanges,

in this paper, we presented a compact approach to modeling kidney
exchange compatibility graphs. Our approach is intimately con-
nected to classical intersection graph theory, and can be viewed as
the first exploration and practical application of p-intersection di-
graphs. We gave necessary and sufficient conditions for losslessly
shrinking the representation of an arbitrary compatibility graph in
this model. Real compatibility graphs, however, are not arbitrary,
and are created from characteristics of the patients and donors; us-
ing real data from the UNOS US-wide kidney exchange, we showed
that using only a small number of attributes suffices to represent
real graphs. This observation is of potential practical importance;
if real graphs can be represented by a constant number of attributes,
then central NP-hard problems in general kidney exchange are
solvable in polynomial time.

This paper only addresses the representation of static compati-
bility graphs; in reality, exchanges are dynamic, with patients and
donors arriving and departing over time [37]. Extending the pro-
posed method to cover time-evolving graphs is of independent the-
oretical interest, but may also be useful in speeding up the (presently-
intractable) dynamic clearing problem [4, 10, 2, 11, 17]. Better ex-
act and approximate methods for computing (k, t)-representations
of graphs would likely be a prerequisite for that line of research.
Furthermore, adaptation of the theoretical results to alternate organ
models like lung [15, 24], liver [16], and multi-organ [12] exchange
would be of practical use.

Appendix A: Omitted Proofs
In this section, we provide the full proof of Theorem 5. Recall the
(k, t)-REPRESENTATION WITH IGNORED EDGES: given an input
of a directed graph G = (V,E), a subset F of E, and integers
k ≥ 1 and t ≥ 0, this problem asks whether there exist bit vectors
di and pi of length k for each i ∈ V such that the {i, j} ∈ F if
and only if 〈di,pj〉 ≤ t.

Consider the gadgetGk defined as follows on a graph on
(
k
2

)
+k

vertices. LetG1
k be the graph defined in Theorem 4 on

(
k
2

)
vertices,

i.e., the complement of a directed cycle on this many vertices. As-
sociate with each vertex u ∈ G1

k a unique element from
(

[k]
2

)
(all

subsets of [k] of size 2). LetG2
k be an independent set of k vertices.

For each vertex i ∈ G2
k, i ∈ [k], add an incoming edge into i from

u ∈ G2
k if and only if i ∈ Su. Figure 5 shows G4.

1

2

3

4

1

d1 : 1100
p1 : 1010

2

d2 : 1010
p2 : 1001

3
d3 : 1001
p3 : 0110

4

d4 : 0110
p4 : 0101

5

d5 : 0101
p5 : 0011

6
d6 : 0011
p6 : 1100

Figure 5: Gadget G4 with a subset of non-edges shown; all edges
between circle vertices (those in G2

4) are also not in E.

Denote the donor neighborhood of i ∈ V by Nd(i) = {j ∈ V :
(i, j) ∈ E, i 6= j}, i.e., the set of patients compatible with donor
i. Similarly, the patient neighborhood of j ∈ V is Np(j) = {i ∈
V : {i, j} ∈ E, i 6= j}.

LEMMA 1. There is a unique (up to permutations) (k, 1)-representation
of Gk.

PROOF. First consider G1
k. For all u ∈ V (G1

k), since {u, u −
1} /∈ E(G1

k), and the compatibility function is f1
thresh, there ex-

ist two distinct conflict bits qu1 and qu2 in Qd(u) ∩ Qp(u − 1).
Moreover, for any u, v distinct, {qu1 , qu2 } 6= {qv1 , qv2}. Otherwise,
{qu1 , qu2 } ⊆ Qp(v−1) and {qv1 , qv2} ⊆ Qp(u−1), but at least one
of the edges {u, v − 1} or {v, u− 1} exists in G1

k.
In addition, |Qd(u)| = 2 for all u ∈ V (G1

k). Suppose not,
and there exists a third distinct (from qu1 and qu2 ) conflict bit qu3
in Qd(u). As the number of vertices is

(
k
2

)
, there exists a vertex

v1 with {qv11 , qv12 } = {qu1 , qu3 }, and a (different) vertex v2 with
{qv21 , qv22 } = {qu2 , qu3 }. Then {u, v1−1} and {u, v2−1} are both
not in E(G1

k). However, u has edges to all vertices except itself
and u−1, which is a contradiction, as u, v1, and v2 are all distinct.
From this, it also follows that |Qp(u)| = 2.

We have thus shown that every vertex u ∈ G1
k has exactly two

bits set to one in its donor attribute vector, with a unique pair of
bits per vertex, and Qd(u) = Qp(u − 1). However, without more
structure, it is not possible to tell in which donor vectors a particular
conflict bit appears. The additional graph G2

k allows us to identify
this, up to permutations.



Since there are no outgoing edges from any of the vertices inG2
k,

and every pair of bits in
(

[k]
2

)
appears in exactly one patient vector

of a vertex in G1
k, each donor vector in G2

k must be the all-ones
vector of length k.

Consider vertex i ∈ [k] in G2
k. It has an incoming edge from

each vertex u ∈ V (G1
k) such that i ∈ Su and it is missing the(

k−1
2

)
other possible incoming edges from G1

k (note that the label-
ing of the vertices, as well as the choices of the sets Su, are made
without any knowledge of the bit-vectors associated with the ver-
tices). We next show that

∣∣∩u∈Np(i)Qd(u)
∣∣ = 1. That this quantity

is at most 1 is clear, as Qd(u) and Qd(v) intersect in at most one
conflict bit for all u, v ∈ V (G1

k), u 6= v. If this quantity were
0, then for some u, v ∈ Np(i), Qd(u) ∩ Qd(v) = ∅. But then
at least two zeroes would appear in Qp(i), which is a contradic-
tion as it implies that i would have more than k incoming edges.
Thus, the patient vector pi for i ∈ V (G2

k) has exactly one zero and
ones elsewhere. Moreover, since Np(i) 6= Np(j) for any distinct
i, j ∈ [k], it follows that pi 6= pj , so each patient vector is distinct
and the position of its only zero is unique.

LEMMA 2. Consider a digraph G having Gk as a subgraph
and an additional vertex x /∈ V (Gk). We use the compatibil-
ity function f1

thresh and seek to find a (k, 1)-representation for the
induced subgraph G[V (Gk) ∪ {x}]. Let U ⊆ V (G1

k) having
that property that if v ∈ V (G1

k) with Qd(v) ⊆ ∪u∈UQd(u),
then v ∈ U . Let U ′ = {u ∈ V (G1

k) : u + 1 ∈ U}. Let
Q = ∪u∈UQd(u).

IfNp(x) = V (Gk1)\U , thenQp(x) = Q. IfNd(x) = V (Gk1)\
U ′, then Qd(x) = Q.

PROOF. We use the fact that there are exactly two bits set to
one in the donor and patient vectors of each vertex in Gk in any
(k, 1)-representation. For the first statement, since x has no edge
from u ∈ U , Qp(x) ⊇ Qd(u). Thus Qp(x) ⊇ Q. Now let
v ∈ V (G1

k)\U and qv ∈ Qd(v)\Q. If qv ∈ Qp(x), then for each
q ∈ Q, there exists a vertex w in G1

k with Qd(w) = {q, qv}, so
that {w, x}would also not be an edge ofG, a contradiction. Hence,
Qp(x) = Q. The second statement follows analogously.

THEOREM 5. The (k, t)-REPRESENTATION WITH IGNORED EDGES
problem isNP-complete.

PROOF. Consider a 3SAT formula on n variables and with m
clauses. Set k = 2n+ 2, and build the following graph on 2 +n+
m +

(
k
2

)
+ k vertices. The first two vertices are labeled v and u.

Then there is a vertex vi for each variable i ∈ [n], a vertex c for
each clause c ∈ [m]. Call the subgraph induced by these 2+n+m
vertices G′. The last vertices come from the gadget Gk.

The vertices in G2
k ground the k bits used in each donor and pa-

tient vector.. We think of the k bits, in order, as corresponding to the
n positive literals, then their n negations, followed by two “extra”
bits. Then the index of literal xi will be i, and the index of literal x̄i
will be n+ i. For i and j distinct in V (G2

k), |Np(i) ∩Np(j)| = 1
withinGk. Denote this vertex ofG1

k by v(i, j), and without loss of
generality we can assume that Qd(v(i, j)) = {i, j}.

The edges among vertices in the induced subgraph Gk are al-
ready defined; we define (a subset) of the rest of the edges. To-
gether, these comprise precisely the subset F of the edges and non-
edges specified as an input the instance we are creating of (k, t)-
REPRESENTATION WITH IGNORED EDGES.

Vertex v has no incoming edges, and the only outgoing edges
from v to V (G′) are to every variable vertex vi, i ∈ [n]. The
rest of the vertices that are not in Gk have no outgoing edges at
all, to either V (G′) or V (Gk), and the only incoming edges are
from vertices of G1

k. Vertex u has an incoming edge from every

vertex of G1
k except v(2n + 1, 2n + 2). For each variable vertex

vi, i ∈ [n], it has an incoming edge from every vertex in V (G1
k)

except v(i, n+ i). For each clause c ∈ [m], let {c1, c2, c3} be the
indices of the three literals that appear in c. Let C ⊂ V (G1

k) be
{v(c1, c2), v(c1, c3), v(c2, c3), v(c1, k), v(c2, k), v(c3, k)}. Then
the vertex corresponding to c has an incoming edge from every
vertex in V (G1

k) \ C.
Every vertex of V (G′) except for v will have a donor vector

with every bit set to one because there are no outgoing edges to any
vertex of G1

k, and v will have an all-ones patient vector because
it has no incoming edges from G1

k. By Lemma 2, in any (k, 1)-
representation ofG, vertex u will haveQp(u) = {2n+1, 2n+2}.
Variable vertex vi, i ∈ [n], will have Qp(vi) = {i, n+ i}. Clause
vertex c ∈ [m] will have Qp(c) = {c1, c2, c3, 2n+ 2}.

Since the graph does not have an edge from v to u, {2n+1, 2n+
2} ⊆ Qd(v) (these are the only two conflict bits in Qp(u) and
the threshold is 1). Since the graph has an edge from v to each
variable vertex vi, i ∈ [n], Qd(v) must contain at most one of the
indices corresponding to the variable or its negation (there are no
conflicts from the extra bits, which are set to 0 in the patient vector
of vi). Since the graph does not have an edge from v to any of the
clause vertices, it has to have at least one conflict bit in a position
corresponding to one of the three literals in the clause (the other
conflict comes from the extra bit 2n+ 2).

Thus, finding a suitable (k, 1)-representation that satisfies the
adjacencies of edges that appear in F would involve finding an ap-
propriate setQd(v), which we have shown corresponds to choosing
at most one value for each xi, as well as choosing at least one lit-
eral that appears in each clause. This is the same as the problem of
finding a satisfying formula for the initial instance of 3SAT.

As an example, consider the 3SAT formula x1∨x̄2∨x3. Figure 6
shows the most relevant part of the graph used in the reduction. One
possible (k, 1)-representation may have Qd(v) = {1, 7, 8}, indi-
cating x1 = 1 and the rest of the variables are arbitrary. Another
example of a possible representation is Qd(v) = {1, 3, 5, 7, 8},
meaning x1 = 1, x2 = 0 (index 5 appears), and x3 = 1.

v

c

u

v1

v2

v3

v(x1, x3) 10100000

v(x1, x̄2) 10001000

v(x3, x̄2) 00101000

v(x1, 8) 10000001

v(x3, 8) 00100001

v(x̄2, 8) 00001001

v(x1, x̄1) 10010000

v(x2, x̄2) 01001000

v(x3, x̄3) 00100100

v(7, 8) 00000011

Figure 6: Example of 3SAT reduction to (k, t)-representation.
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