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ABSTRACT
Iterative voting is a social choice mechanism whereby voters
are allowed to strategically change their stated preferences
as the vote progresses, until an equilibrium is reached; at this
point, no voter can make a beneficial strategic change. We
study iterative voting for several common voting rules and
show that, for these rules, such an equilibrium may never
be reached. We also consider several variations of iterative
voting (restrictions on the allowable changes to votes), and
show that with these variations equilibrium may also not be
reached. Finally, we do an empirical analysis of the quality
of candidates elected through iterative voting.

1. INTRODUCTION
The topic of voting, that is, how to aggregate diverse in-

dividual preferences into a collective decision, is of great
importance in many automated agent scenarios; it has thus
been the topic of much research in multiagent systems. One
innovative voting model that was recently proposed is that
of iterative voting [12]. Whereas classic voting rules usually
consist of a single round of ballot submission and announce-
ment of the winner, in iterative voting there can be many
such rounds. After each iteration, if any voter wishes to
change their vote they may do so, and potentially a new
winner replaces the previous one (when multiple such voters
exist, an arbitrary voter is chosen). The process terminates
when no voter wishes to change their vote. Iterative voting
thus embraces the inevitable manipulability of voting shown
in the Gibbard-Satterthwaite theorem [20, 6], and considers
agents’ uniform ability to vote strategically as a collective
opportunity.

Besides being an intriguing method for reaching consen-
sus, iterative voting has been proposed as a formal solution
concept for voting games. Standard Nash equilibria are of
limited usefulness in voting games where the group outcome
is generally robust to changes in any single voter’s action.
The set of iterative voting equilibria, however, is a subset
of Nash equilibria, and in particular those iterative voting
equilibria reachable from the truthful profile could be con-
sidered a more natural (or meaningful) solution concept.

The most salient questions regarding iterative voting thus
have two interpretations. Regarding iterative voting as a
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method for reaching an outcome, we ask whether the pro-
cess terminates; if so, with what complexity; and does it
arrive at “good” outcomes. Regarding iterative voting as a
solution concept, we must explore the existence of solutions;
the equilibria computation; and notions of price of stabil-
ity/anarchy.

Most previous research on iterative voting has focused
on plurality, with several extensions to other scoring rules.
However, in this work we look into previously unexplored
voting rules which are not scoring rules—Maximin, Copeland,
Bucklin, STV, Second Order Copeland (SOC), and Ranked
Pairs. In the process of investigating these voting rules,
we design dynamics under which the iterative voting might
evolve. While we show that convergence is not guaranteed,
we proceed to analyze the outcomes of the iterative dynamic
empirically, showing that cycles are not very common, and
moreover, the outcomes are generally very good.

2. RELATED LITERATURE
There has been extensive research on solution concepts of

voting games, and an overview of the research can be seen
in Meir et al. [11]. Due to space constraints, we focus in this
section on the iterative model which we extend.

Our model of iterative voting was initiated by Meir et
al. [12], who showed that Plurality voting converges under a
natural restricted best-response dynamic and linear ordered
tie-breaking (a dynamic refined in [10]). Lev and Rosen-
schein [8] (and in parallel [19]) later showed that Veto, with
a similarly natural restricted best-response dynamic, also
converges. However, [8] and further work showed that no
other scoring rules converge for best-response dynamics, as
well as showing that allowing non-linear tie-breaking will
result in Maximin not converging (though they showed no
result on Maximin with linear tie-breaking).

Reijngoud and Endriss [18] added an epistemic element by
varying the amount of information revealed at each stage,
and also showed that any scoring rule converges under the
k-pragmatism dynamic. Grandi et al. [7] showed that, for
two additional restrictive dynamics, scoring rules (as well as
Copeland and Maximin), converge, and Loreggia [9] added
another very restrictive dynamic, showing that Copeland
and Maximin converge under it. Obraztsova et al. [16] ab-
stracted these ideas and put forth two theoretical properties
which suffice to guarantee convergence. Not in connection to
iterative voting, Obraztsova and Elkind [13] proposed sev-
eral dynamics, of which we adopt, for example, the Kendall-
Tau dynamic.

Research examining the properties of iterative voting oc-



curred in parallel. Meir et al. [11] showed that a generaliza-
tion of iterative voting, where voters act under uncertainty,
also converges for Plurality. [17, 14] considered questions of
computational complexity related to iterative voting, with
and without assumptions about “truth bias” and “lazy bias”
on the part of voters.

Brânzei et al. [3] examined the quality of iterative voting,
via the notion of the dynamic price of anarchy. They showed
lower bounds for Plurality, Veto, and Borda, and a tight up-
per bound for Plurality. Additional work on the quality of
iterative voting includes that of [11, 18, 7] (all mentioned
in other contexts, above) who showed through simulations
some improvements in the outcome of elections, in their vari-
ous versions of iterative voting. However, the closest work in
its pattern of simulations and quality measures is Thompson
et al. [21], which analyzed truth-biased equilibria, without
any assumption regarding their dynamics.

3. PRELIMINARIES
Our setting will be the standard voting model that in-

cludes a set of voters V, |V | = n, and a set of candidates
C, |C| = m. Each voter i has a strict preference order �i
over C, that is, a complete, reflexive, transitive, and anti-
symmetric binary relation over C. Denote the set of all such
preference orders as P(C). A profile

~� = (�1,�2, ...,�n) ∈ P(C)n

is a vector of n preference orders, one for each voter. We
denote by

~�−i = (�1, ...,�i−1,�i+1, . . . ,�n) ∈ P(C)n−1

the profile of the voters excluding i and (~�−i,�i) = ~�. We
shall denote the truthful preferences of voters as ~tr = (�tr1
, . . . ,�trn ).

We model a collective decision through one of two func-
tions. A social welfare function is a function f : P(C)n →
P(C)\{∅} and a voting rule is a function F : P(C)n →
2C\{∅}. So, given a (not necessarily truthful) vector of pref-
erences, a social welfare function chooses a preference order
and a voting rule chooses a set of candidates. When a voting
rule is irresolute, and we would like a unique winner, we use
a tie breaking rule, a function t : 2C → C. A linear-ordered
tie breaking rule is a rule that breaks ties according to a fixed
linear order. It will be without loss of generality throughout
this paper that the linear-ordered tie breaking rule we use
is the lexicographic tie breaking rule, where ties are broken
according to the lexicographic order of candidates’ names.

3.1 Voting Rules
We shall investigate the following voting rules:

Maximin For each pair of candidates c1, c2 let P (c1, c2) =
|{x ∈ V |c1 �x c2}|. For each candidate c, let sc(c) =

min
c′ 6=c∈C

P (c, c′). The candidates with the maximum score,

arg max
c∈C

sc(c), win.

Copeland Let P (c1, c2) = |{x ∈ V |c1 �x c2}|, as above.
For α ∈ [−1, 1], let sc(c) = |{c′|P (c, c′) > n/2}| −
|{c′|P (c, c′) < n/2}|+α · |{c′|P (c, c′) = n/2}|, and the
candidates with the maximum score, arg max

c∈C
sc(c),

win. (Generally α = 0 is assumed).

Bucklin For each c ∈ C, let
sc(c) = mink<m |{x ∈ V |∃c1, . . . cm−k s.t. c �x ci}| >
n/2. The winner is the candidate with the smallest
score, arg min

c∈C
sc(c).

STV Under Single Transferable Voting (STV), the elec-
tion proceeds in rounds. In each round, the candidate
with the lowest plurality score is eliminated and any
voter voting for them transfers their vote to their next
ranked candidate. The last remaining candidate is the
winner.

SOC Second Order Copeland (SOC) chooses winners as in
Copeland, except that ties are broken according to the
score of defeated candidates. If sc(c) is the Copeland
score of c, then Second Order Copeland chooses c ∈
arg max
c∈C

sc(c) s.t.
∑
sc(c′)

c′:P (c,c′)>n/2
is maximal.

Ranked Pairs (RP) Let P (c1, c2) = |{x ∈ V |c1 �x c2}|,
as above. Let

O = (P (ci1,1 , ci1,2), P (ci2,1 , ci2,2), ..., P (ci
(m2 ),1

, ci
(m2 ),2

))

be the sorted list of pairs of candidates’ P-score such
that

P (cij,1 , cij,2) ≥ P (cij+1,1 , cij+1,2).

If P (cij,1 , cij,2) = P (cij+1,1 , cij+1,2), then

P (cij,1 , cij,2) �O P (cij+1,1 , cij+1,2)

iff ij,1 < ij+1,1 or ij,1 = ij+1,1 and ij,2 < ij+1,2; i.e.,
break ties in order lexicographically (first candidate,
second candidate). A ranking is constructed by the
following algorithm. For j=0 to

(
m
2

)
fix cij,1 � cij,2

unless this contradicts a previous step (including by
transitivity). The candidate at the top of the con-
structed ranking is selected as the winner.

An interesting property of which we will make use regards
the Condorcet winner. A Condorcet winner is a candidate
who is preferred to each other candidate by more than half of
the voters; however, such a winner does not always exist. A
voting rule is Condorcet consistent if whenever there is such
a Condorcet winner, it is the election’s outcome. Among
the voting rules we discuss, Maximin, Copeland, SOC and
Ranked Pairs are Condorcet consistent, while Bucklin and
STV are not.

3.2 Dynamics
We will call a binary relation D ⊂ P(C)n × P(C)n a

dynamic. We call a (possibly finite) sequence of profiles
(~�1, ~�2, ...) ∈ P(C)∗ a profile sequence and a (possibly fi-
nite) sequence of voters (v1, v2, ...) ∈ V ∗ a voter sequence.
A profile sequence (~�1, ~�2, ...) for which ~�1 are the truthful
preferences, is called an initially truthful profile sequence.

We will say a profile sequence is valid for a dynamic D
if ∀i(~�i, ~�i+1) ∈ D. We will mainly be concerned with dy-
namics for which all elements differ in a single preference,
i.e.,

∀[(~�(1)
, ~�(2)

) ∈ D] ∃i ∈ V s.t. ~�(1)
−i = ~�(2)

−i .

In such a case, a profile sequence induces a voter sequence
(v1, v2, ...) where vi is the voter whose preference changed



at stage i. Likewise, a voter sequence defines a set of profile
sequences by which it is induced. A voter sequence will be
called valid if it is induced by some valid profile sequence.

The final element of a (finite) valid profile sequence
(~�1, ~�2, ..., ~�k) will be called an equilibrium if there is no
~�k′ such that (~�k, ~�k′) ∈ D.

For a dynamic D and voting rule F with tie breaking rule
t, let I(D, Ft) = {s|s is a valid profile sequence for D(Ft)}.
We will say that iterative-F converges (or always converges)
under D if every element of I(D, Ft) is finite. Otherwise,
we will say that iterative-F under D cycles (or may cycle)
or does not converge (or may not converge). Notice that,
as defined, the semantics of convergence are asynchronous.
I(D, Ft) converges if every element is finite, and is not lim-
ited to, say, a “fair schedule of play.”

The dynamics we shall consider will be influenced by the
truthful preferences, i.e., a dynamic in which a voter’s vote
changed must have increased the utility of that vote. Two
main dynamics have been investigated (e.g., in Meir et al. [12]).
An ordered pair of profiles is in the better response dynamic
if the preferences of all voters but one are identical in the
two profiles, and the voter whose preference changes prefers
the outcome of the second profile to that of the first profile.
In game-theoretic terms, any time a single player can make
a better response to a given state, such a move is included

in the dynamic. Formally, for two profiles ~�(1)
, ~�(2)

and a

voting rule F, (~�(1)
, ~�(2)

) ∈ BetterResponse iff:

∃i ∈ V s.t. ~�(1)
−i = ~�(2)

−i and F (~�(2)
) �tri F (~�(1)

).

Such an i is called the manipulator, �(2)
i is called the new

vote, and �(1)
i is called the old vote. Notice that a stable

state under this dynamic is a Nash equilibrium.
Similarly, an ordered pair of profiles is in the best response

(BR) dynamic if the preferences of all voters but one are
identical; the voter whose preference changes prefers the out-
come of the second profile to that of the first profile (so it is
contained in the better response dynamic); and of all possi-
ble changes to his preferences, the outcome under the second
profile is preferred at least as much as the outcome under

any other possible profile. Formally, (~�(1)
, ~�(2)

) ∈ BR iff:

∃i ∈ V s.t. ~�(1)
−i = ~�(2)

−i and F (~�(2)
) �tri F (~�(1)

)

and

∀ �′′∈ P(C) s.t. (~�(1)
−i ,�

′′) 6= ~�(2)
, F (~�(2)

) �tri F (~�(1)
−i ,�

′′).

The above description clearly defines a game form. The
set of voters is the set of players, the set of preferences is
the set of strategies available to each player, and the voting
rule determines the outcome of a strategy profile. Ordinal
utilities are given by true preference orders. An equilibrium
under Best Response (or Better Response) is a Nash equi-
librium.

4. DYNAMICS
The study of best response dynamics is prolific, but in the

iterative voting context, particular forms of best response
have been utilized in the convergence proofs of both plural-
ity [12] and veto [8]. For non-scoring rules, however, there
is no immediately clear choice of best response form (in-
deed, in some cases, like STV, it is NP-complete to calcu-
late what it is). We present here several dynamics that may

serve as natural heuristics for a potential voter. There have
been dynamics designed with the express purpose of ensur-
ing convergence, as in k-pragmatism, M1, and M2 [18, 7].
However, we propose the following as possibly more natural
correspondences to the strategic behavior of self-interested
agents.

TOP: This dynamic assigns the candidate which the voter
wishes to make a winner the top spot in the new preference
order. In many of the voting rules we consider (and any
weakly-monotone rule) this dynamic is a subset of the best-
response dynamic (i.e., TOP (P(C)) ⊂ BR(P(C))), and,
indeed, it generalizes the dynamic used in Meir et al. [12].

TB: This dynamic requires the new winner to be at the
top of the new ballot, and the previous winner to be at
the bottom. While in many scoring rules (e.g., plurality and
veto) this is a subset of best response moves (and generalizes
those used in Lev and Rosenschein [8]), this is not true in
general, and particularly in the voting rules we study in this
work.

KT: This dynamic restricts best response to those with
minimum Kendall-Tau distance from the previous vote. That
is, among all possible moves whose outcome will be the most
preferred possible candidate, one with the minimal Kendall-
Tau distance1 from the current vote is chosen.

SWAP: This dynamic, inspired in part by notions from
the literature on bribery (see, e.g., [5, 4]), is quite restrictive.
It restricts manipulations to a single swap (called a ‘shift’ in
the bribery literature) or even a single adjacent swap (i.e.,
changing to a vote within Kendall-Tau distance of one from
the current vote; a ‘swap’ in the bribery nomenclature).

5. CONVERGENCE
In this section we consider the convergence of iterative

voting for several voting rules. We distinguish between the
first three, for which there exists a polynomial time algo-
rithm for a single voter to compute a best response manip-
ulation, and the last three for which such a computation is
NP-Complete [2, 1, 22]. In reversal of the common situation
in computational social choice, for iterative voting polyno-
mial manipulation is actually quite felicitous.

A note on reading the examples: each column represents
a profile of submitted ballots (beginning with the truthful
one). The final row in the column indicates the winner of
the profile. The i-th entry in a column represents voter i’s
submitted preferences, where, for example, ABC is to be
read A �i B �i C. Arrows highlight the changed prefer-
ence between two profiles at a given stage. The profile se-
quence formed by continual repetition of the indicated pro-
files thus forms an infinite element of I(D, Ft) and proves
non-convergence. Due to space constraints, we omit several
proofs and examples.

5.1 Maximin
Similar to plurality and veto, Maximin changes gradually.

The difference in score between the previous winner and the
new one, when a single voter manipulates, can go up or down
by at most one point. One might thus expect there to be an
argument for convergence, similar to plurality/veto. But in
fact, convergence with Maximin turns out to be elusive even

1For a, b ∈ P(C), the Kendall-Tau distance between them
is defined as dist(a, b) = |{i, j} ∈ V |(i �a j and j �b
i) or (j �a i and i �b j)}|.



after major restrictions on the allowable moves.

Theorem 1. Maximin with linear order tie-breaking does
not converge for the dynamics BR, TOP, TB, KT and SWAP.

Proof. For BR, the example is:

BAC BAC // CBA CBA
��

CAB // ABC ABC // CAB
CAB CAB CAB CAB

BCA BCA BCA BCA

B A B C
For TOP, the example is:

CDAB CDAB // DABC DABC
��

ACBD // ADBC ADBC // ACBD
BCDA BCDA BCDA BCDA

C A D A
For TB, the example is:

ACDBE // ACEBD ACEBD // ADEBC ADEBC
��

DBCEA DBCEA // CBDEA CBDEA // DBCEA
EBDCA EBDCA EBDCA EBDCA EBDCA

D A C A D
For KT, the example is:

DBACE // BDCAE BDCAE BDCAE

oo

EDCAB EDCAB // DECAB DECAB

CEADB CEADB CEADB // EACBD
A B D A

DBCAE

//

DBCAE DBCAE

EDCAB EDCAB DECABoo

CEADB EACBDoo EACBD

C E D
And, finally, for SWAP, the example is:

CABD CABD CABD CABD // CADB CADB
��

BDCA BDCA BDCA BDCA BDCA BDCA

DBAC DBAC DBAC DBAC DBAC DBAC

DCBA DCBA // CDBA CDBA CDBA // DCBA
ABCD // ACBD ACBD // ABCD ABCD ABCD

B A C B A D
Although the changes to the winner’s score are as grad-

ual in Maximin as in plurality and veto, the exponential
blowup in strategy space seems to make convergence harder.
Whereas in plurality and veto, a voter’s ballot reduces to a
single candidate, in Maximin a ballot depends on the entire
ranking.

5.2 Copeland
Theorem 2. Copeland with linear order tie-breaking does

not converge for the dynamics BR, TOP, TB, KT and SWAP.
This holds for Copelandα for any α.

Proof. Since the number of voters in all our examples is
odd, they hold for Copelandα for any α.

The example for BR:

BDCA BCDA // DBCA DBCA
��

CDAB // DABC DABC // CDAB
ABCD ABCD ABCD ABCD

B A D C
The example for the TOP dynamic:

DABC DABC // ACBD ACBD
��

BDAC // BACD BACD // BDAC
CDBA CDBA CDBA CDBA

D B A B
Using the TB dynamic and moving the desired winner to

the top and the current undesired winner to the bottom does
not suffice to avoid cycles:

ACB ACB // ABC ABC
��

BCA // CBA CBA // BCA
A C A B

The exact same example as TB also serves to show re-
stricting best response by minimum Kendall-Tau distance
does not suffice to avoid cycles.

Finally, restrictions to a single adjacent swap does not
suffice:

BCA BCA // CBA CBA
��

ABC // ACB ACB // ABC
B A C A

5.3 Bucklin

Theorem 3. Bucklin with linear order tie-breaking does
not converge for the dynamics BR, TOP, TB, KT and SWAP.

Proof. The example for BR:

ACB ACB // CBA CBA
��

BAC // CBA CBA // BAC
ABC ABC ABC ABC

CBA CBA CBA CBA

A B C B
The example for TOP:

BACD BACD // CBAD CBAD // ADBC ADBC
��

DBAC // DCAB DCAB // DABC DABC // DBAC
BDAC BDAC BDAC BDAC BDAC BDAC

CDBA CDBA CDBA CDBA CDBA CDBA

ADCB ADCB ADCB ADCB ADCB ADCB

B D C D A D
The example for the TB dynamic:



ADBC ADBC // ACBD ACBD
��

CBDA // DBCA DBCA // CBDA
CADB CADB CADB CADB

DBAC DBAC DBAC DBAC

A D A C
The example for the KT dynamic:

ABCD ABCD // ACBD ACBD
��

DCBA // DBCA DBCA // DCBA
CBAD CBAD CBAD CBAD

DACB DACB DACB DACB

A B A C
The example for the SWAP dynamic:

DCBA DCBA // DBCA DBCA
��

ABCD // ACBD ACBD // ABCD
CDAB CDAB CDAB CDAB

BDAC BDAC BDAC BDAC

D C D B

5.4 STV

Theorem 4. STV with linear order tie-breaking does not
converge for the dynamics BR, TOP, TB, KT and SWAP.

Proof. The example for the BR dynamic:

BCDA // DCAB DCAB // BADC BADC
��

ADBC ADBC // DBCA DBCA // ADBC
CDAB CDAB CDAB CDAB CDAB

A C D B A
The example for the TOP dynamic:

CDAB // DABC DABC // CABD CABD
��

ABCD ABCD // BACD BACD // ABCD
DACB DACB DACB DACB DACB

CBDA CBDA CBDA CBDA CBDA

A D B C A
The example for the TB dynamic:

CABD CABD // ACDB ACDB
��

DBCA // BADC BADC // DBCA
DBCA DBCA DBCA DBCA

CDAB CDAB CDAB CDAB

C B A D
The example for the KT dynamic:

DBAC DBAC // BDAC BDAC
��

ACBD // CABD CABD // ACBD
CDBA CDBA CDBA CDBA

DABC DABC DABC DABC

D C B A
The example for the SWAP dynamic:

ADCB ADCB // DACB DACB
��

DBAC // BDAC BDAC // DBAC
CBDA CBDA CBDA CBDA

A B C D

5.5 Second Order Copeland

Theorem 5. SOC with linear order tie-breaking does not
converge for the dynamics BR, TOP, TB, KT and SWAP.

Proof. The example for BR is:

BCDA BCDA // CBDA CBDA
��

DABC // DACB DACB // DABC
B D C A

The examples for the other dynamics are the same as those
for Copeland.

5.6 Ranked Pairs
In Ranked Pairs, as in other voting rules which output

a complete ranking, a stronger convergence property could
be defined for the entire ranking, but convergence is elusive
even for just the top element of the ranking (the winner of
Ranked Pairs).

Theorem 6. Ranked pairs with linear order tie-breaking
does not converge for the dynamics BR, TOP, TB, KT and
SWAP.

Proof. The example for the BR dynamic:

BDCA BDCA // DACB DACB // CBAD CBAD
��

CBAD // CDAB CDAB // BACD BACD // CDAB
B C D A B C

The example for the TOP dynamic:

ADBC ADBC // ACBD ACBD
��

CDAB // DABC DABC // CDAB
BCDA BCDA BCDA BCDA

A D A C
The example for the TB dynamic:

DABEC DABEC // BADEC BADEC
��

CADEB // CABED CABED // CADEB
ECADB ECADB ECADB ECADB

BDECA BDECA BDECA BDECA

D C B C



The example for the KT dynamic:

DABC DABC DABC DABC // ADBC ADBC
��

BDCA BDCA // BDAC BDAC BDAC // BDCA
CABD // CADB CADB // CABD CABD CABD

CBDA CBDA CBDA CBDA CBDA CBDA

B C D B A C
The above example, is also for the SWAP dynamic, as all

changes are of Kendall-Tau distance of one.

6. EMPIRICAL ANALYSIS OF OUTCOMES
We now consider the behavior of iterative voting, and the

quality of its outcomes, through the results of empirical sim-
ulations. Assessing the quality of a voting method can be
subtle. One general methodology is the a posteriori ap-
proach, to judge a rule by the quality of its outcome. Yet
there is no definitive agreed-upon measure of quality of vot-
ing rules. Moreover, some voting rules have been designed
with a particular measure of quality in mind, such as Max-
imin, ensuring the core number of supporters a candidate
has, against any other one, is maximal.

Another compelling criterion is Condorcet efficiency. If a
candidate is preferred to each other candidate by a majority
of voters, there is reason to think it should be the winner.
Thus it could be interesting to consider how often, for a
given distribution of voter preferences, a rule chooses the
Condorcet winner.

Furthermore, we wish to estimate social welfare. Social
welfare’s utility is limited in voting settings as we gener-
ally do not have the cardinal utility functions of our voters.
However, as has been suggested in previous research, we can
use the Borda score on the truthful preferences, in which the
utility of each voter of an outcome is m− i, if the winner is
candidate c ∈ C which the voter ranks in place i.

As noted before, among the rules we considered in the
previous section, Maximin, Copeland, Ranked Pairs, and
Second Order Copeland are all Condorcet consistent. For
these, therefore, we can only consider how much worse iter-
ative voting can be than truthful voting (though, of course,
we know voters do not actually always vote truthfully, so
it is not as if iterative plurality is necessarily worse than a
non-iterative model). For both STV and Bucklin—which
are not Condorcet consistent—there is a possibility that it-
erative voting could have greater Condorcet efficiency than
static voting. And for all rules, we can compare the Borda
score of the truthful winner with the (truthful) Borda score
of the equilibrium winner.

Our method is influenced by those of [21, 18, 7, 11]. Un-
like [18, 7], however, which study iterative voting under re-
strictive dynamics (M1, M2, and k-pragmatism), we choose
to analyze iterative voting under best-response dynamics.
Unrestricted best-response is both computationally taxing
as well as possibly cyclical. Nevertheless, as the most basic
form of iterative voting, it seems to us to be of the greatest
interest.

Our findings are the results of simulations of iterative vot-
ing for the six rules we have studied. Simulations were run
for each rule twice, once with 10 voters and once with 25.
Both runs had 4 candidates. For each set of parameters,

10,000 initial (truthful) profiles were sampled uniformly at
random. Each profile evolved, for each voting rule, under
best response dynamics and was run to completion (or detec-
tion of a cycle) 20 times. In keeping with the asynchronous
conception of iterative voting, each of the 20 executions were
developed at each step by uniformly sampling a voter with
a potential move and uniformly sampling a move from all of
that voter’s possible best-response moves.

We begin with statistics regarding the behavior of best re-
sponse in the iterative version of the various rules. Table 1
shows the average number of steps in each of the 200,000
paths considered per setting. Many of the 10,000 initial pro-
files were Nash equilibria, and so non-manipulable. There-
fore, a significant fraction of the paths were of length zero.
For convenience, we also include the average path length
among non-zero-length paths. Finally, we show the maxi-
mum length among the 200,000 paths.

Voting rule Avg.

length

Corrected

avg.

length

Max

length

Nash

equilibrium

share in

truthful

prefs

Maximin 10 2.29 8.66 143 73.5%
Maximin 25 4.97 25.19 325 80.24%
Copeland 10 6.42 19.42 269 66.55%
Copeland 25 5.51 24.69 504 77.65%
Bucklin 10 3.24 7.32 232 55.55%
Bucklin 25 4.67 11.66 301 59.94%

STV 10 0.94 4.46 97 78.84%
STV 25 1.65 8.00 182 79.32%
SOC 10 5.55 17.38 254 67.76%
SOC 25 5.66 26.00 306 78.18%
RP 10 2.13 8.55 131 75.03%
RP 25 4.18 22.83 376 81.7%

Table 1: Path Lengths

Unsurprisingly, as the number of voters grows, the prob-
ability of sampling a Nash equilibrium grows as there is
a larger probability of the difference between the winner
and the runner up being large enough so a single voter
cannot change it (using similar reasoning, increasing the
number of candidates would have increased the chances of
strategic moves). On the other hand, the path lengths with
more voters are longer than those with fewer voters. In the
(rarer) case that an elections is close, more voters can partic-
ipate in the strategic process. Copeland (and Second Order
Copeland) tended to have longer paths and STV had espe-
cially short paths, but in general the NP-Complete rules did
not have shorter paths than polynomial rules.

Before we begin analyzing the quality of the outcomes, we
remark on an important point of relevance to the previous
section.

For all of the rules, cycles occur quite rarely—the highest
share of cycles was 0.57%, though most were well under
0.1%; see Figure 1. So although we have shown that all
these rules can cycle, the frequency with which they do is
very low. Copeland (and SOC), which exhibited the greatest
(non-cyclic) path length, also tends to cycle more often than
other rules, but it too cycles quite infrequently. STV, which
has especially short paths, also cycles less frequently, but
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Figure 1: Out of all iterative processes (i.e., not in-
cluding cases where the truthful preferences were a
Nash equilibrium), the share of outcomes which de-
creased the Borda score, increased it, truthful out-
come (of each voting rule), and the share of runs
which ended in a cycle.

in general there does not appear to be a distinction in the
number of cycles between NP-Complete rules and P rules.

For more voters, there are many fewer cycles, apparently
because of the sparsity of cycles and uniform choice of paths.

The rarity of cycles suggest that perhaps iterative voting
could be used even with these rules and best response dy-
namics. In the rare case of a cycle it could be detected and
turned over to some cycle-breaking rule, e.g., either run-
ning the election again or deciding amongst the different
outcomes in the cycle.

Turning to assess the observed outcomes of iterative vot-
ing, we first note that quite often iterative voting leads to
the original outcome. Many such instances are the result
of original profiles which are non-manipulable. But many
are also the result of manipulations, whose equilibrium re-
verted to the original winner. Of the manipulable profiles
(see Figure 1), the non-Condorcet consistent rules (Bucklin
and STV) behave differently than the others—both of them
have fewer than 50% of the outcomes truthful, but their ratio
increases as voters grow, unlike the rest of the voting rules.
Copeland exhibited the most consistency when increasing
the number of voters.

Next we assess the change in Borda score (our proxy for
social welfare) and Condorcet efficiency. As can be seen in
Figure 1, once again Bucklin and STV behave significantly
differently than other voting rules—for them, a significant
number of outcomes increase the Borda score as compared to
the truthful outcome. This is almost always not the case for
the Condorcet consistent rules. However, in all Condorcet
consistent rules except Maximin the share of outcomes which
decreased the Borda score was close to the share of those that
increased it. In all of them but Ranked Pairs this difference
was decreased further when the number of voters increased.
In all Condorcet consistent voting rules the average Borda
score of the outcome was below that of the truthful outcome,
but only slightly so—less than 1 point difference. Contrary
to that, both Bucklin and STV’s average Borda score was

above their truthful one, and for Bucklin significantly so
(above a 2 point difference).

With regard to Condorcet efficiency, we consider, for each
of the 10,000 profiles, whether a Condorcet Winner existed
in the original profile, whether it is selected by the voting
rule, and whether it is was the outcome in a reached equilib-
rium. The latter is presented in Table 2 in terms of efficiency
(out of 10,000) after aggregating equilibria over non-cycling
paths.

Voting rule # of Profiles Share of outcomes
with a Condorcet with Condorcet

winner winner
Maximin 10 4764 0.47
Maximin 25 8413 0.82
Copeland 10 4764 0.47
Copeland 25 8413 0.81
Bucklin 10 3717 0.45
Bucklin 25 4461 0.58

STV 10 4610 0.47
STV 25 7795 0.83
SOC 10 4764 0.47
SOC 25 8413 0.81
RP 10 4764 0.47
RP 25 8413 0.82

Table 2: Comparing Condorcet Efficiency (of 10,000
profiles)

Of the 10,000 profiles sampled with n=10, there were
4764 for which a Condorcet Winner existed; among those
with n=25, there were 8413 with a Condorcet Winner. As
mentioned, Maximin, Copeland, Ranked Pairs, and Second
Order Copeland are Condorcet-consistent, so efficiency has
only one direction to move (downward). Yet it does so by
very little, although slightly more when there are more vot-
ers.

Of the two rules that are not Condorcet consistent, Buck-
lin and STV improve their efficiency under iterative voting.
These two rules also fared well under Borda criteria, sug-
gesting that iterative Bucklin and iterative STV could be
considered improvements on their static counterparts. In-
terestingly, Bucklin is also the most manipulable among the
rules (it contained the fewest number of paths of size zero).

7. CONCLUSION AND DISCUSSION
In this work we have continued the exploration of iterative

voting. We have done so in two dimensions. In the first,
we expanded the set of dynamics to include some which
reflect strategic behavior, but restrict best response in a,
to a certain extent, natural way—whether by constraining
the placement of affected candidates, or by prioritizing mi-
nor ballot changes. In the second dimension, we have ven-
tured beyond scoring rules, and have shown that for Max-
imin, Copeland, Bucklin, STV, Second Order Copeland, and
Ranked Pairs, iterative voting under best response dynamics
does not always converge. Even after restricting the dynam-
ics to allow voters only limited changes to their ballots they
still do not always converge.

On the other hand, we have shown empirically that cycles
seem to occur rather infrequently with all of these rules. Fur-
thermore, we have shown that iterative voting, according to



certain common criteria, does not perform much worse, and
sometimes does better, than non-iterative voting. Notably,
in non-Condorcet consistent rules—Bucklin and STV—the
winners tend to improve significantly through iterative vot-
ing with regard to both their Borda score and Condorcet
efficiency.

Continuation of this line of work would include analysis of
convergence conditions for more voting rules and additional
dynamics, with an aim towards discovering convergence dy-
namics, or establishing broader impossibility results. The
empirical aspect of this work would benefit from expand-
ing the analysis, for example by analyzing more distribu-
tions than we had space to include here (e.g., the Mallows
model). More generally, the study of iterative voting would
be greatly enhanced by incorporating voter learning into the
model, and endowing voters with a greater degree of strate-
gic (non-myopic) capabilities (early work in this direction
includes Obraztsova et al. [15]).
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