
Fair Social Choice in Dynamic Settings

Rupert Freeman
Duke University

rupert@cs.duke.edu

Seyed Majid Zahedi
Duke University

zahedi@cs.duke.edu

Vincent Conitzer
Duke University

conitzer@cs.duke.edu

ABSTRACT
We study a dynamic social choice problem in which an alternative
is chosen at each round according to the reported valuations of a set
of agents. In the interests of obtaining a solution that is both effi-
cient and fair, we aim to maximize the Nash social welfare, which
is the product of all agents’ utilities. We present three novel rules
and discuss some of their properties. Two are greedy algorithms
and the third attempts to explicitly learn the distribution over in-
puts, updating its decisions by solving a convex program at each
round. We also take a more generally applicable algorithm from
existing literature and apply it to our problem. Finally, we compare
all four algorithms against the offline optimal solution in simula-
tions.

1. INTRODUCTION
Fairness is a topic of rapidly increasing interest in social choice.

On the one hand, there has been much recent interest in the fair allo-
cation of resources—cake cutting [25] as well as other models [14,
22]. On the other hand, in voting, fairness considerations have re-
ceived attention in selecting a committee of candidates, in the form
of a focus on the voters being represented in the committee [10, 20,
8].

A classical approach to obtaining a fair outcome in a context
where agents have utility functions is to maximize the Nash so-
cial welfare [21], which is the product of the agents’ utilities. One
attractive feature of using the Nash social welfare is scale invari-
ance: if an agent doubles all her utilities (or, equivalently, changes
the units in which she expresses her utilities), this does not change
which outcomes maximize the objective.

In life, it is often difficult to make a completely fair decision in
a single-shot context; often, every option will leave some agents
unhappy. Fortunately, we can often address this over time—we
will go to my most preferred restaurant today, and to yours next
week. Achieving fairness over time is the topic of our paper. Ours
is certainly not the first work to consider fairness or social choice
in dynamic settings; see, for example, [24, 16, 6].

When we make multiple decisions over time, we could simply
maximize the Nash welfare in each round separately. But it is easy
to see that this can lead to dominated outcomes. For example, sup-
pose there are two agents, and we can choose an alternative that
gives one a reward of 3, and the other a reward of 0; or vice versa;

Appears at: 3rd Workshop on Exploring Beyond the Worst Case in Com-
putational Social Choice. Held as part of the 15th International Conference
on Autonomous Agents and Multiagent Systems. May 9th-10th, 2016. Sin-
gapore.

or an alternative that gives each of them 1. Within a round, the last
alternative maximizes Nash welfare; but if this scenario is repeated
every round, then it would be better to alternate between the first
two alternatives, so that each agent obtains 1.5 per round on aver-
age. Of course, initially, say in the first round, we may not realize
we will have these options every round, and so we may choose the
last alternative; but if we do have these options every round, we
should eventually catch on to this pattern and start alternating. Ide-
ally, we would maximize the long-term Nash welfare, that is, the
product of the long-run utilities (which are the sums of each agent’s
rewards), rather than, for example, the sum of the products within
the rounds. Of course, if there is uncertainty about the options that
we will have in future rounds, we cannot expect to get the same
Nash welfare that we could obtain with perfect foresight. For ex-
ample, we may choose to make an agent happy this round, and then
later realize that in typical rounds, this agent is very easy to make
happy and we should have focused our efforts on an agent that is
more difficult to make happy. While such scenarios are inevitable,
we do want to adapt and learn over time and thereby approximate
the ideal Nash welfare.

In this work, we do not focus primarily on strategic concerns
(though we discuss this in more detail in Section 7). Of course it
is fairly common to ignore strategic concerns in the social choice
literature, but we do think this is an important topic for future work.
On the other hand, there are also important contexts where strategic
concerns do not come into play. For example, instead of consider-
ing a setting where there are multiple agents that have different
utility functions, we can consider a setting where there are multiple
objectives that each alternative contributes towards. For example,
consider faculty hiring. Suppose the three objectives that we want
our faculty hires to contribute to are research, teaching, and ser-
vice; moreover, suppose that at the time of hiring we can predict
well how much each candidate would contribute to each of these
objectives, if hired. Then, it stands to reason that, one year, we
may hire a top researcher that we do not expect to contribute much
to our teaching or service objectives. But we would be loath to
make such a decision every year; having hired a few top researchers
who are not good at teaching or service, pressure will mount to ad-
dress needs in the latter two. This fits well into our framework,
if we simply treat each of the three objectives as an agent that is
“happy” with an alternative to the extent to which it addresses the
corresponding objective. In particular, note that the fact that objec-
tives are measured in incomparable units – for example, we might
measure research crudely by number of top-tier publications, and
teaching crudely by course evalation scores – poses no problem
to our methodology, since this methodology can anyway address
agents measuring their utilities in different units. (Since we are not
in a setting with a numeraire, there is no reason their utilities should

have similar units.) Thus, a reader who insists on game-theoretic
modeling in the case of agents with utility functions may instead
substitute this modified interpretation of addressing multiple ob-
jectives everywhere in our paper.

The rest of the paper is organized as follows. In Section 2 we
introduce notation and preliminaries. In Section 3 we present two
simple greedy algorithms for choosing alternatives, and provide in-
tuitive interpretations of them. We make a computational distinc-
tion between them and provide an axiomatic justification for one
of them. In Section 4 we present an algorithm which can be seen
as an approximation to the optimal solution when T is infinite. In
Section 5 we present an existing algorithm designed for a more
general class of stochastic optimization problems with good regret
guaranatees.

After presenting the algorithms, we evaluate them on simulated
data in Section 6. Finally, in Section 7 we discuss some strategic
considerations in the repeated setting, and in Section 8 we discuss
specific applications of our methodology, including to voting.

Related work: Parkes and Procaccia [24] examine a similar
problem by modeling agents’ evolving preferences with Markov
Decision Processes, with a reward function defined over states and
actions (alternatives). However, their goal is to maximize the sum
of (discounted) rewards and they do not explicitly consider fairness
as an objective. Kash, Procaccia and Shah [16] examine a model of
dynamic fair division where agents arrive at different points in time
and must be allocated resources; however, they do not allow for
the preferences of agents to change over time as we do. A recent
paper by Aleksandrov et al. [6] considers an online fair division
problem in a setting where items appear one at a time, and agents
declare yes/no preferences over that item. In our setting, each round
has many alternatives and we allow agents to express more general
utilities. Our work is related to the literature on dynamic mecha-
nism design (see, e.g., [23] for an overview), except that we do not
consider monetary transfers. Guo, Conitzer and Reeves [15] con-
sider a setting similar to ours, also without money, except that they
are not explicitly interested in fairness, only welfare, and focus on
incentive compatibility.

2. PRELIMINARIES
Consider a set of n agents and let A be a set of m possible al-

ternatives.1 At every round t = 1, . . . , T , agents report their val-
uation for every alternative. In this paper we allow the valuations
to be integers in the range 0 to K for some finite K (therefore we
can achieve arbitrarily fine granularity by allowing K to be large).
Thus the input at every round is a matrix Vt ∈ Zn×m≥0,≤K . For ev-
ery round t, a Dynamic Social Choice Function (DSCF) chooses a
single alternative, corresponding to a column of Vt, which we de-
note by vt. Importantly, the problem is online, so we may only use
information up to time t in order to choose vt.

The valuation of agent i for the alternative j at time t is Vt(i, j),
and at each round we can think of an agent’s valuation vector,
Vt(i, ·), as their reported valuation for each alternative. Although
the columns of Vt are formally indexed by alternatives, we will of-
ten refer to the vector V (·, j) simply as j when there is no risk of
confusion. Thus the valuation of agent i for alternative vt will be
denoted by vt(i). We define a vector of accrued rewards at round
t, ut, where the accrued reward of agent i at round t is the sum of
agent i’s valuations for the chosen alternatives up to and including

1For simplicity of presentation, we define the set of alternatives to
be static. However, all of our algorithms and results hold if the set
of alternatives, and even the number of alternatives, changes from
round to round.

round t, ut(i) =
∑t
t′=1 vt′(i). We will most often be interested

in an agent’s accrued reward before the start of round t, ut−1(i).
The average utility of the agents over the first t rounds is given by
vave
t = 1

t
ut.

A DSCF is anonymous if applying permutation σ to the rows of
Vt, for all t, does not change the chosen alternative vt, for any t.
A DSCF is neutral if applying permutation σ to the columns of Vt,
for all t, results in choosing alternative σ(vt) for all t. For the rest
of this paper we only consider anonymous, neutral DSCFs.

The DSCFs that we discuss are presented in a way that natu-
rally allows ties between alternatives. We think of the mechanisms
choosing a set of possible alternatives, and then choosing a single
alternative from the set arbitrarily.

The Nash social welfare (NSW) of utility vector v, NSW (v), is
defined to be the product of the agents’ utilities,

NSW (v) =

n∏
i=1

v(i). (1)

The NSW is frequently used as an objective in the fair division
literature as it strikes a balance between maximizing efficiency and
fairness (for recent examples in the computer science literature, see
[11, 13, 26]). One further nice property of NSW is that it is scale-
free, meaning that the optimal choice of alternative is unchanged
if some agent(s) report valuations on different scales from others.
Our aim is to maximize the NSW of the average utility across all
T rounds, NSW (vaveT). Some of our algorithms involve the use
of convex programming, which requires a concave objective func-
tion to maximize. Unfortunately, NSW is not a concave function,
however ln(NSW) is. Thus, we will interchangeably talk about
maximizing

ln(NSW (vave
t)) = ln

(
n∏
i=1

vave
t (i)

)
=

n∑
i=1

ln(vave
t (i)).

Since ln is an increasing function, the solution maximizing
lnNSW (v) is the same as the solution maximizing NSW (v).

The benchmark algorithm is the opfimal offline algorithm, where
an offline instance of the problem is given by the set of matrices
{Vt}t∈{1,...,T}. The offline problem can be solved via the follow-
ing mixed integer convex program:

Maximize
n∑
i=1

ln

(
T∑
t=1

m∑
j=1

xtjVt(i, j)

)
(2)

subject to
m∑
j=1

xtj = 1 ∀t, xtj ∈ {0, 1} ∀t, j

where xtj is a binary variable denoting whether or not alternative j
is chosen at time t. The constraint simply says that for each t, we
must choose exactly one alternative. We denote the optimal value
achieved by convex program 2 by OPT (thus the optimal Nash so-
cial welfare is eOPT).

3. GREEDY ALGORITHMS
In this section we present two simple greedy algorithms.

The first algorithm, GREEDY, simply chooses vt to maximize
NSW (vavet). The other, LINEARGREEDY, is a linear version of
GREEDY which assigns each agent a weight wi equal to the inverse
of their accrued utility at the start of each round and simply chooses
vt = argmaxv∈Vt

w · v. The advantage of these algorithms lies in
their simplicity to understand and execute.

One challenge that these algorithms face is that in the early
rounds it may not be possible to give all agents non-zero utility.
Therefore it may be the case that u(vavet) = 0 for all choices of
vt, even when one allocation is clearly better than all others. We
address this by allocating some small ‘hallucinated’ utility to those
agents with zero accrued reward (not necessarily the same to each
agent), which is removed once the agent accrues some positive re-
ward. The algorithms are shown as Algorithms 1 and 2. For Algo-
rithm 1, let the parameter x be such that 0 < x < 1

2n(K+1)n(n+1) .

Algorithm 1 GREEDY

1: for i = 1, . . . , n do
2: Set x ≤ εi ≤ 2(K + 1)n−1x
3: end for
4: Initialize u0 = (0, . . . , 0)
5: for t = 1, . . . , T do
6: Choose vt ∈ argmaxv∈Vt

∏n
i=1(max{ut−1(i) +

v(i), εi})
7: ut = ut−1 + vt
8: end for

Algorithm 2 LINEARGREEDY

1: for i = 1, . . . , n do
2: Set 0 < δi <

1
nK

3: end for
4: Initialize u0 = (0, . . . , 0)
5: for t = 1, . . . , T do
6: Set wi = 1

max{δi,ut−1(i)}
for all i

7: Choose vt ∈ argmaxv∈Vt
w · v

8: ut = ut−1 + vt
9: end for

We first state a lemma which follows easily from the choice of
εi.

LEMMA 3.1. For all j, k such that 1 ≤ k < k+ j ≤ n, and all
sets of agents I and I ′, of size k + j and k respectively,

(K + 1)n−k−j
∏
i∈I

εi <
∏
i′∈I′

εi′ .

PROOF. Let 1 ≤ k < k + j ≤ n. Let I = {i1, . . . , ik+j}
and I ′ = {i′1, . . . , i′k}. Recall that 0 < x < 1

2n(K+1)n(n+1) and

x ≤ εi ≤ 2(K + 1)n−1x for all i. Then

(K + 1)n−k−j
∏
i∈I

εi ≤ (K + 1)n−k−j(2(K + 1)n−1x)k+j

< xk(K + 1)n−k−j(2(K + 1)n−1)k+j ·(
1

2n(K + 1)n(n+1)

)j
≤ xk 2

n(K + 1)(k+j+1)n−2k−2j

(2n(K + 1)n(n+1))j

≤ xk 2
n(K + 1)(k+j+1)n−2k−2j

2n(K + 1)n(n+1)

< xk
(K + 1)n(k+j+1)

(K + 1)n(n+1)

≤ xk

≤
∏
i′∈I′

εi′

We next state a simple interpretation of GREEDY. Let
NSW+(v) be the product of all non-zero entries in v.

PROPOSITION 3.2. At every round, GREEDY selects an alter-
native to maximize the number of agents with ut(i) > 0. Sub-
ject to this condition, and holding fixed the set of agents with
non-zero utility, GREEDY chooses an alternative which maximizes
NSW+(vavet).

PROOF. Consider the action of GREEDY at round t. Suppose
first that all agents have ut−1(i) > 0. Then the first condition
in the proposition statement is vacuous; all choices maximize the
number of agents with ut(i) > 0. Since εi < 1 for all i, the choice
at Line 6 is precisely to maximizeNSW (vavet) = NSW+(vavet).

Now suppose that ut−1(i) = 0 for some agent i, and consider
two alternatives v′ and v. Suppose that |I ′ = {i : ut−1(i) +
v′(i) = 0}| = k and |I = {i : ut−1(i) + v(i) = 0}| = k + j >
k. To show that GREEDY maximizes the number of agents with
ut(i) > 0, it suffices to show that the product in Line 6 is larger
when v′ is chosen than when v is chosen.

We consider the case in which the produc tin Line 6 is greatest
for v (compared to v′). In particular, all n−k agents with ut−1(i)+
v′(i) > 0 have ut−1(i) + v′(i) = 1, and all n− k− j agents with
ut−1(i) + v(i) > 0 have ut−1(i) + v(i) = K + 1 (if ut−1(i) +
v(i) > K + 1 then ut−1(i) + v′(i) ≥ ut−1(i) > 1, since no
single-round valuation is greater than K). Then the product on
Line 6 for v′ is

∏
i′∈I′ εi′ , and for v is (K + 1)n−k−j

∏
i∈I εi.

By Lemma 3.1, the former is greater than the latter, and GREEDY
chooses v′, thus minimizing the number of agents with ut(i) = 0.

Finally, suppose that GREEDY chooses vt when there exists an-
other alternative v which results in the same set of agents with
ut(i) > 0 (call this set of agents I), and NSW+(ut−1 + vt) <
NSW+(ut−1 + v). Then, by definition of NSW+,∏

i∈I

(ut−1(i) + vt(i)) <
∏
i∈I

(ut−1(i) + v(i))

⇐⇒
∏
i∈I

(ut−1(i) + vt(i))
∏
i/∈I

εi <
∏
i∈I

(ut−1(i) + v(i))
∏
i/∈I

εi

⇐⇒
n∏
i=1

max{(ut−1(i) + vt(i)), εi} <
n∏
i=1

max{(ut−1(i) + v(i)), εi},

which contradicts the choice of vt.

Indeed, we can show that every alternative not ruled out by The-
orem 3.2 can be chosen by GREEDY, for some choice of {εi}.

THEOREM 3.3. Suppose alternative amaximizes the number of
agents with ut(i) > 0. Suppose further that for all j such that
choosing j results in the same set of agents with non-zero accrued
reward, NSW+(ut−1 + Vt(·, j)) ≤ NSW+(ut−1 + Vt(·, a)).
Then a is chosen by GREEDY for some choice of {εi}.

PROOF. Let a ∈ Vt satisfy the conditions of the theorem state-
ment. We exhibit a set of {εi} such that a is chosen by GREEDY.
Let I be the set of agents with non-zero accrued reward after choos-
ing a. Then let εi = x (the same x as in Line 2 of Algorithm 1) for
all i ∈ I , and εi′ = 2(K + 1)n−1x for all i′ /∈ I . Consider some
alternative j that also maximizes the number of agents with non-
zero accrued reward (since otherwise, by Proposition 3.2, it would
certainly not be chosen by GREEDY), and denote by J the set of
agents given non-zero accrued utility after choosing j.

Suppose that J 6= I . By assumption, |J | = |I|. Therefore
|I\J | = |J\I|. Let us consider the contribution of all agents to the

product in Line 6 of Algorithm 1 for alternatives j and a. There are
four types of agent to consider:

1. An agent i ∈ I\J . These are agents for which ut−1(i) = 0,
with Vt(i, a) ≥ 1 and Vt(i, j) = 0. Therefore each of these
agents contributes a factor of at least 1 to the product for a
and εi = x to the product for j.

2. An agent i ∈ I ∩ J . These are agents for which the choice
of either a or j both result in ut(i) > 0. In the worst case
for a (relative to j), ut−1(i) = 1 with Vt(i, a) = 0 and
Vt(i, j) = K. That is, each of these agents contributes a
factor of at least 1 to the product for a and at most K + 1 to
the product for j.

3. An agent i ∈ J\I . These are agents for which ut−1(i) = 0,
with Vt(i, a) = 0 and Vt(i, j) ≥ 1. Each of these agents
contributes a factor of εi = 2(K+1)n−1x to the product for
a and at most K to the product for j.

4. An agent i /∈ I ∪J . These are agents for which the choice of
either a or j both result in ut(i) = 0. Thus they contribute
exactly the same factor to the product for both a and j.

Let us write down the product from Line 6 for a (not counting
the agents of type 4 which make the same contribution to both). It
is at least:

(2(K + 1)n−1x)|J\I| = (2(K + 1)n−1x)|I\J| (3)

The product for j (not counting the agents of type 4 which make
the same contribution to both) is at most:

x|I\J| · (K + 1)|I∩J| ·K|J\I| ≤ x|I\J| · (K + 1)|I∩J| · (K + 1)|J\I|

= x|I\J| · (K + 1)|I∩J| · (K + 1)|I\J|

(4)

Noting that |I∩J |+ |I\J | ≤ n−1 (since |I∩J |+2|I\J | ≤ n
and I\J is nonempty), it is clear that expression 3 is greater than
expression 4. Therefore the product in Line 6 is higher for a than
for j.

Finally, suppose that J = I . Then, by the condition of the the-
orem, NSW+(ut−1 + j) ≤ NSW+(ut−1 + a), which implies
that choosing a results in a weakly higher product in Line 6 than
choosing j.

Therefore a is chosen by GREEDY, since all other alternatives
which maximize the number of agents with non-zero accrued re-
ward after round t have been ruled out, given our particular choice
of ε.

Unlike GREEDY, LINEARGREEDY may leave some agents with
zero utility even when it was possible to give positive utility to all
agents.

EXAMPLE 3.4. Let n = 2, m = 3, and suppose that V1 =
(3 0 1
0 3 1). The columns represent alternatives a1, a2, and a3 respec-

tively, and the rows represent agents i1 and i2 respectively.
For any choice of 0 < ε1, ε2 << 1, GREEDY chooses a3 since

3εi < 1. However, LINEARGREEDY assigns the agents weights
w1, w2 and chooses argmaxv∈{a1,a2,a3} w · v. Since it must be
the case that either 3w1 > w1 + w2 or that 3w2 > w1 + w2, it is
not possible for a3 to be chosen by LINEARGREEDY even though
it is the only alternative which gives both agents positive utility.

We can, however, provide a weaker guarantee for LINEAR-
GREEDY.

PROPOSITION 3.5. LINEARGREEDY always chooses an alter-
native vt with vt(i) > 0 for at least one agent i with ut−1(i) = 0,
if such an alternative exists.

PROOF. Let i be an agent with ut−1(i) = 0 and v be an al-
ternative with v(i) ≥ 1. Then the weight assigned to i at round
t by LINEARGREEDY is wi = 1

δi
≥ nK, and the dot product in

Line 7 of Algorithm 2 is at least nK. Suppose for contradiction
that LINEARGREEDY chooses an alternative v′ such that v′(i) > 0
only for agents with ut−1(i) > 0. The weight of each such agent
is 1
ut−1(i)

≤ 1
1
= 1, and v′(i) ≤ K, thus the dot product in Line 7

is at most (n − 1)K < nK. Thus v′ is not chosen by LINEAR-
GREEDY.

3.1 Computational Considerations
Clearly, when the number of allocations, m, is not too large, the

outcome of both GREEDY and LINEARGREEDY can be computed
efficiently. However, consider a setting in which every round is a
combinatorial allocation problem, so the number of alternatives is
exponential in the number of items being allocated. For instance,
if every round is an allocation of food bank items [6] to differ-
ent charities then we will have substitutes and complements which
must be taken into account, thus charities have preferences over
subsets of items, not just items themselves. In this setting, comput-
ing the chosen alternative under GREEDY is weakly NP-hard even
in a very restricted case.

PROPOSITION 3.6. Computing the chosen alternative vt under
GREEDY is weakly NP-hard, even when there are only two agents
and each has additive valuations over the items.

PROOF. Suppose there are two agents with the same valuation
over the items in the first round. Then the allocation under GREEDY
is to allocate each agent an equal share of the items according to
their common valuation (or as close to equal as possible). This is
exactly an instance of PARTITION, which is weakly NP-hard.

Note that for the LINEARGREEDY algorithm, computing the
chosen alternative is equivalent to the combinatorial auction win-
ner determination (CAWD) problem, which has been studied ex-
tensively [27, 7, 18]. Thus, the outcome under LINEARGREEDY
can be computed efficiently under exactly the same conditions as
the CAWD problem.2 Even in those cases where LINEARGREEDY
can not be computed efficiently, we can use any existing algorithm
for the CAWD problem.

3.2 Axiomatization of LINEARGREEDY

It is possible to simply consider LINEARGREEDY an approxi-
mation to GREEDY. However, in this section we provide an ax-
iomatization of the LINEARGREEDY mechanism which provides
some justification for seeing it as a worthwhile rule in and of itself,
without needing to appeal to its approximation of GREEDY.

A DSCF is scale-free if it is not affected by a uniform (multi-
plicative) scaling of some agent’s valuations. This property is de-
sirable because it means we do not require any sort of agreement or
synchronization as to the units of measurement used by the agents
in their reporting.

DEFINITION 3.7. Let c > 0. Say that a DSCF satisfies scale-
free-ness (SF) if the chosen alternative at round t is still among the
set of (possible) chosen alternatives if we replace v(i) by c · v(i)
for all v ∈ Vt for every t = 1, . . . , T .
2For example, when agents have preferences over bundles of size
at most 2, the problem is in P.

LEMMA 3.8. LINEARGREEDY satisfies SF.

PROOF. Suppose that agent i scales all their valuations by c >
0. We show by induction that there exists some choice of δ such that
LINEARGREEDY still chooses the same alternative at each round as
it did before the scaling.

Consider the first round, t = 1. Let δ′ denote the vector of
hallucinated utilities chosen before the scaling. When i scales their
valuations by factor c, simply set δi = c · δ′i,3 and deltaj = delta′j
for all j 6= i. Thus the weight of i is scaled by 1

c
, so the value of

w ·v is unchanged for all v ∈ Vt, and the same alternative is chosen
at round 1.

Now consider round t > 1, and suppose that the same alterna-
tives are chosen for all rounds before t. In particular, the accrued
utility of all agents i′ 6= i (or, in the case that i′ has zero accrued
utility, then the value of δi) is the same as before the scaling, so
their weights have not changed. But the accrued utility of i has
scaled by a factor of c, since i’s valuation for every alternative at
every round is scaled by c (and, in the case that i has zero accrued
utility, we still have that δi = c ·δ′i), so that the weight of i is scaled
by 1

c
. Thus, again, w · v is unchanged for all v ∈ Vt and the same

alternative is chosen.
Finally we need to rule out the possibility of there being some

setting of δ such that some new alternative, a, is chosen at round t
as a result of the scaling that was not previously chosen. But if this
were the case, then we can just scale the scaled instance by 1

c
and

return to the original instance where, by the above proof, there is
some value of δ such that a is chosen at round t.

A DSCF is separable into single-minded agents if the chosen
alternative at a given round is unchanged by replacing an agent by
several new agents with the same accrued utility, each of which has
unit positive valuation for only one alternative.

DEFINITION 3.9. Say that a DSCF is separable into single-
minded agents (SSMA) if, at round t, the same allocation is chosen
if we replace each agent with several new agents according to the
following scheme: An agent with valuation vector Vt(i, :) is, for
each j ∈ {1, . . . ,m}, replaced by Vt(i, j) new agents, each with
valuation vector ej . Each new agent has the same (possibly hallu-
cinated) accrued utility as the original agent it replaces.

LEMMA 3.10. LINEARGREEDY satisfies SSMA.

PROOF. Consider round t with valuation matrix Vt. LINEAR-
GREEDY chooses

argmax
j∈Vt

n∑
i=1

(
Vt(i, j)

1

ut−1(i)

)
Now suppose that we replace the agents with new agents according
to the definition of SSMA. For every agent i and alternative j, we
now have Vt(i, j) agents with accrued utility ut−1(i) and valuation
vector ej . The accrued utility, and therefore the weight of each of
these agents in the LINEARGREEDY algorithm, is the same as the
agent it replaced. Thus the value of the dot product on Line 7 for
an alternative j is

n∑
i=1

(
Vt(i, j)

1

ut−1(i)

)
,

and LINEARGREEDY chooses the same alternative in each
case.
3It is possible that δi is now greater than 1

nK
. If this is the case,

we can simply divide δ by some small constant, bringing δi back
into the allowed range and not changing the relative weights of the
agents.

The plurality axiom says that if all agent valuation vectors are
unit vectors, and we have no reason to distinguish between agents,
then the allocation favored by the most agents should be chosen.

DEFINITION 3.11. Say that an allocation satisfies plurality (P)
if, when all agents have preferences of the form ej , and all agents
have the same (non-zero) accrued utility, then the chosen alterna-
tive is the one with non-zero valuation from the most agents.

The axiom says nothing about the case when all agents have zero
accrued utility. The idea of the axiom is that we should choose the
alternative which provides the greatest utility gain, relative to what
agents already have. However, in the case that agents have zero
accrued utility, it is not possible to make accurate comparisons as
to the relative benefit each agent receives.

OBSERVATION 3.12. LINEARGREEDY satisfies plurality.

We now show that any mechanism that achieves SF, SSMA, and
P simultaneously must agree with LINEARGREEDY, provided that
all accrued rewards are non-zero.

THEOREM 3.13. Suppose that ut−1(i) > 0 for all i. Denote
by Jt the set of all alternatives that may be chosen by LINEAR-
GREEDY at time t. If a DSCF satisfies SF, SSMA, and P then it
must choose some alternative from Jt at time t.

PROOF. We have already shown that LINEARGREEDY satisfies
SF, SSMA, and P.

Suppose that all agents have ut−1(i) > 0. LetM be a DSCF that
satisfies all three axioms simultaneously. We show thatM ’s choice
of alternative is the same as one chosen by LINEARGREEDY.

Without loss of generality, let ut−1(i) = u for all agents i. We
may assume this because, by SF, M would choose the same al-
location at round t (and all previous rounds) even if the valuation
vectors of some agent(s) were multiplied by a constant across all
rounds. So, if ut−1(i) 6= ut−1(j), we can transform the instance
to one in which all agents have the same accrued reward by mul-
tiplying agent i’s valuations by

∏
j 6=i ut−1(j) for all i. Then all

agents have the same acccrued utility,
∏
i ut−1(i).

By SSMA, we can replace the agents with
∑m
j=1 Vt(i, j) agents,

such that Vt(i, j) of them have valuation vector ej for all j ∈
{1, . . . ,m}, all with accrued reward u. Then, by plurality, the cho-
sen allocation is

argmax
j∈Vt

n∑
i=1

Vt(i, j). (5)

But note that LINEARGREEDY assigns equal weight wi to each
agent since ut−1(i) = ut−1(j) for all i, j. Thus LINEARGREEDY
chooses precisely the alternatives which maximize Equation 5.

4. DISTRIBUTIONAL UPDATE ALGO-
RITHM

So far we have assumed nothing about the way that the input
matrices are drawn. In this section, we will assume that there is
some distribution,D, over Zn×m≥0,≤K from which matrices are drawn
i.i.d at each round.4

Suppose first that we know D, and that T = ∞. Then the opti-
mal solution is defined by a policy: when Vt = v, choose allocation
j with probability xvj . We simply need to choose values for {xvj}
4In practice, this algorithm may be suitable when we believe the
distribution of inputs to be somewhat stable over time.

in order to maximize E(NSW (vavet)), as t → ∞. We can com-
pute these variables by the following convex program:

maximize
n∑
i=1

log(
∑

v∈Zn×m
≥0,≤K

m∑
j=1

Pr(Vt = v)xvjv(i, j)) (6)

subject to
∑
j∈A

xvj = 1 ∀v ∈ Zn×m≥0,≤K , xvj ≥ 0 ∀v, j

THEOREM 4.1. The variables xvj computed by convex pro-
gram 6 define the optimal policy when the distribution D is known
and T =∞.

PROOF SKETCH. Let {xvj} be the optimal solution to convex
program 6. We show that {xvj} converges to the optimal solution
for the offline problem in the case that T → ∞. So consider an
offline instance for some large T , large enough that every matrix
v that occurs with non-zero probability in D appears a large num-
ber of times in the input. For every round that Vt = v, choose
an alternative by sampling from the distribution xvj . Denote the
objective value achieved by SD . Now consider the observed dis-
tribution in the finite instance, O. Consider solving convex pro-
gram 6 for distribution O, giving variables xOvj , and denote the
value of the resulting solution on the large instance, SO . It can
be shown that SO → SD as O → D. By the law of large numbers,
limT→∞O = D, therefore limT→∞ SO = SD .

Now consider the optimal offline solution as defined by mixed
integer program 2. Denote the value it achieves by SMIP . Clearly
SMIP ≥ SO , since SMIP is optimal. Next, consider the alterna-
tives chosen in the offline solution and use them to define variables

x′vj = #times(Vt = v and j is chosen)/#times(Vt = v). (7)

Denote the value of the solution defined by the x′vj variables by S′.
S′ = SMIP since sampling from the solution corresponding to S′

gives the solution corresponding to SMIP .
Lastly, we show that limT→∞ S

′ ≤ limT→∞ SO . Note that the
variables x′vj are a feasible solution to convex program 6. There-
fore, as long as the instance is large enough that the probabilities
xOvj can be well-sampled for every v that appears in the instance,
SO is the highest value that can be achieved. As T → ∞, we
can sample these variables arbitrarily well. Thus, limT→∞ S

′ ≤
limT→∞ SO .

So, in the limit as t→∞, we have the relations

SMIP = S′ ≤ SO = SD ≤ SMIP . (8)

Here the inequalities are forced to be equalities, otherwise we get
SMIP < SMIP . In particular, limT→∞ SD = SMIP .

Let us now relax the assumption that D is known to the algo-
rithm. In this case, one approach would be to approximately learn
the distribution by sampling, then compute the optimal policy ac-
cording to the learned distribution, and act accordingly for the re-
maining rounds. We can even continue to update our belief on the
distribution as often as we want, re-compute the variables {xvj},
and choose according to them until we perform another update step.
If T =∞, we can learn the distribution arbitrarily well, and behave
close to optimally in the long term.

The algorithm we present now uses the same heuristic even when
T is finite. We begin with no knowledge of D, but update our
belief with every new piece of information Vt, and use the inferred
distribution to compute a policy {xvj}.

Crucially, the update to ps is done before vt is actually chosen
according to xVtj . Were this not the case, the algorithm would not
be defined when valuation matrix s appears for the first time.

Algorithm 3 UPDATE

1: for t = 1, . . . , T do
2: for s ∈ {V1, V2, . . . , Vt} do
3: Let ps = (number of times s has been realized)/t
4: end for
5: Solve Convex Program 6 using inferred probabilities ps
6: Randomly draw vt according to xVtj

7: end for

EXAMPLE 4.2. Let n = m = 2. Suppose that V1 = (1 0
0 1),

where the columns represent alternatives a1 and a2 respectively.
Then the algorithm updates its belief on D to be that V1 appears
with probability 1, in which case the optimal polcy is to choose a1
and a2 with probability 0.5 each. Suppose it randomly chooses a1.
Suppose that V2 = (2 0

0 1). Then the algorithm updates its belief on
D to be 0.5V1 + 0.5V2. Given this distribution, the optimal policy
is to choose a1 when V2 is realized and a2 when V1 is realized.
Thus, the algorithm chooses v2 = a1. Now suppose that V3 = V2.
Then the updated belief on D is 1

3
V1 + 2

3
V2. The optimal policy

now is to choose a2 whenever V1 is realized, and whenever V2 is
realized to draw randomly from 3

4
a1 + 1

4
a2. Thus the algorithm

draws an allocation for v3 from this distribution.

Observe that, in Example 4.2, from the perspective of the algo-
rithm at t = 3, a mistake was made at round 1 by choosing a1
instead of a2. As stated, this algorithm does nothing to take the
mistake into account. However, one could imagine incorporating a
more ‘backwards-looking’ approach into this algorithm. As a sim-
ple example we could, with probability p, simply use GREEDY at
round t, which would act to partially compensate for past mistakes.
In Example 4.2, GREEDY would choose a2 to make up for agent 2
not accruing any utility from the first two rounds.

5. STOCHASTIC CONVEX PROGRAM-
MING APPROACH

A recent paper by Agrawal and Devanur [5] designed algorithms
for a general class of problems that encompasses our framework. In
their setting, the input is a concave function over a bounded domain
R, a convex set S ⊆ R, and the goal is to choose a vector vt at each
round so that f(vaveT) is maximized, subject to vaveT ∈ S. For the
setting in our paper, however, there is no constraint, since all input
vectors are feasible. That is, S = R.

They provide an algorithm using tools from convex optimiza-
tion which, in our setting, reduces to Algorithm 4. The algorithm
assigns a vector of weights, φ, to the agents and minimizes the
weighted sum of valuations at each round (weights can be nega-
tive). Every round, φ is updated by an online convex optimization
update (the implementation we present uses the gradient descent
algorithm to update φ).

The initialized variables φ and η can be set to any values satis-
fying the constraints. In our implementation, we set φ = −1 and
η = 0.5 after some experimentation.

Agrawal and Devanur prove a regret bound on Algorithm 4 of

O

(√
n log(n)

T

)
. This is a bound on the expected regret when the

input matrices appear in a random order. It is not a guarantee on
any single instance. Therefore, while we would expect good perfor-
mance from this algorithm on random instances, we may not neces-
sarily expect low regret on instances where the agents’ preferences
change over time in a structured way. We explore this further in
Section 6.

Algorithm 4 STOCHASTIC

1: Initialize φ ∈ Rn, ||φ||2 ≤
√
n, η > 0.

2: for t = 1, . . . , T do
3: Choose vt = argminj∈Vt

j · φt
4: if φt(i) > −1

K+1
then

5: Set φt+1(i) = φt(i)− η(vt(i)−K − 1)
6: else if φt(i) < −1 then
7: Set φt+1(i) = φt(i)− η(vt(i)− 1)
8: else
9: Set φt+1(i) = φt(i)− η(vt(i)− 1

φt(i)
)

10: end if
11: if ||φt+1||2 >

√
n then

12: Set φt+1 =
√
n

||φt+1||2
φt+1

13: end if
14: end for

The regret guarantees provided by Algorithm 4 require that the
concave function is Lipschitz continuous on the bounded domain
R. Unfortunately, our function, logNSW (·), is not Lipschitz con-
tinuous at 0, which we fix by shifting the agents’ valuations to lie
in the range {1, . . . ,K+1}. After solving, we then shift the valua-
tions back before computing the value of the solution found. When
K is large, this shift is not too significant. IfK was small, we could
shift the utilities by something less than 1. However, the Lipschitz
constant increases as we allow inputs closer to 0, and this constant
appears as a linear factor in the regret bound.

6. EXPERIMENTS

6.1 Simulated Data
We compare the four algorithms discussed in this paper –

GREEDY, LINEARGREEDY, STOCHASTIC, and UPDATE– on in-
put data randomly generated from a variety of distributions. As a
benchmark we also compute the optimal offline solution for each
input using MIP (2).

We consider three input models. The first, uniform, has each
Vt(i, j) chosen uniformly at random between 0 and 20. The sec-
ond, half-half, draws Vt from a different distribution depending on
t. For t < T

2
, Vt = (A B

C D), where A,B,C,D are submatrices of
size n

2
× m

2
. Entries in A are integers in the range 0 to 25 drawn

uniformly at random, entries in B and C are in the range 0 to 5,
and entries in D are in the range 0 to 10. For t ≥ T

2
, submatrices

A,B,C,D are drawn in the same way but Vt = (D B
C A). The third

model, alternating, sets Vt = (A B
C D) for odd t and Vt = (D B

C A) for
even t. In both of these latter models, it is almost always optimal
to choose an alternative for which half of the valuations are being
drawn from the high, ‘A’, distribution. The other agents can be
compensated in a round where they draw from the ‘A’ distribution.

For every fixed value of n,m, T , and input model that we report,
values are averaged over 15 random instances. When not explicitly
varied, n = 20, m = 10, and T = 40.

Consider first the runtime comparisons in Figure 1. These sim-
ulations are performed on inputs drawn from the half-half model,
varying values of n, m, and T seperately. Three of the algorithms,
GREEDY, LINEARGREEDY, and STOCHASTIC, take virtually no
time to run on the instances we consider. This is not surprising
as each makes only a simple comparison between each of the m
alternatives, followed by some very simple arithmetic operations
to update weights and accrued utility. The UPDATE algorithm is
the slowest by far on our simulations, even slower than the MIP
for solving the offline problem (although we would expect that for

Table 1: Spark Workloads
App Category Dataset Data Size
Correlation Statistics kdda2010 [28] 2.5G
DecisionTree Classification kdda2010 2.5G
FP Growth Pattern Mining Webdocs [19] 1.5G
GradientBoostedTrees Classification kddb2010 [28] 4.8G
KMeans Clustering uscensus1990 [3] 327M
LinearRegression Classification kddb2010 4.8G
ALS Collaborative Filtering movielens2015 [2] 325M
NaiveBayesian Classification kdda2010 [28] 2.5G
SVM Classification kdda2010 2.5G
Pagerank Graph Processing wdc2012 [4] 5.3G
ConnectedComponents Graph Processing wdc2012 5.3G
TriangleCounting Graph Processing wdc2012 5.3G

large values of T , the MIP would become slower than UPDATE).
We could speed it up by a constant factor of k by only updating the
inferred distribution, and values of xVtj , every k rounds, and still
expect reasonable results. All of our algorithms scale well with n
and m. Runtime results for the other two input models are very
similar and we do not present them here.

Turning to the value comparisons in Figure 2, we see that the
input model used heavily influences the performance of the algo-
rithms. In these graphs, OPT is normalized to 1, and for each input
model we present results only for varying T . The results for vary-
ing m and n look very similar.

For the uniform input model, all algorithms perform well,
achieving at least 75% of the optimal value. This model provides
a relatively simple case for the algorithms; indeed, simply maxi-
mizing (additive) welfare at each round is the optimal solution in
the limit as T grows. For the half-half distribution, STOCHASTIC
is clearly better than all the other algorithms, achieving around 60-
70% of OPT compared to less than 30% for the others. This is
because the weight vector, φt, can change quite significantly in the
space of just one round. Thus it is not over-burdened by rounds
in the past and is able to quickly adapt when the input distribu-
tion changes. In fact, in all instances that we examined closely,
STOCHASTIC chooses a ‘good’ alternative for the first T

2
rounds,

followed by a ‘bad’ alternative for a single round, and then ‘good’
alternatives for all remaining rounds.

However, the tendency to take exactly one round to adapt to
changing circumstances counts against STOCHASTIC in the alter-
nating model, since by the time it adapts the input distribution has
changed again. Here we see the other algorithms performing well,
achieving very close to optimal performance, while STOCHASTIC
achieves very close to 0. Indeed, this model is tailored to suit UP-
DATE, which quickly learns to choose an alternative with some
‘A’ valuations, and the greedy algorithms, since it enables us to
alternate which agents get the high valuations, keeping everyone
roughly equally well-off at the end of every round.

6.2 Real Data: Power Boost Allocation
We ran the algorithms on real data gathered from a power boost

allocation problem. In this problem, n computer applications are
each allocated a base level of power, and compete for m < n ad-
ditional (indivisible) units of extra power (power boosts) at each
of T rounds. For our instance, power boosts are allcoated using
RAPL [1] technology and each application’s performance is mea-
sured under base and high power limits, 30W and 130W, respec-
tively. We evaluate Apache Spark [29] benchmarks. Table 1 lists
the twelve Spark applications in our instance.

Each Spark application is defined by a fixed number
of tasks. We profile tasks’ completion time. We de-
fine an application’s utility in a round as the number of
tasks completed normalized by its total number of tasks.

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
n

0

5

10

15
S

ec
on

ds
MIP
Update
Stochastic
Greedy
Linear

G

(a) Running time, n varies

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
m

0

5

10

15

S
ec

on
ds

MIP
Update
Stochastic
Greedy
Linear

G

(b) Running time, m varies

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
T

0

5

10

15

S
ec

on
ds

MIP
Update
Stochastic
Greedy
Linear

G

(c) Running time, T varies

Figure 1: Simulation results showing the effect of varying number of agents, n, number of alternatives, m, and number of rounds,
T , on the runtime of each algorithm.

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
T

0.75

0.8

0.85

0.9

0.95

1

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Update
Stochastic
Greedy
Linear_G

(a) Value, uniform model

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
T

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Update
Stochastic
Greedy
Linear_G

(b) Value, half-half model

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
T

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Update
Stochastic
Greedy
Linear_G

(c) Value, alternating model

Figure 2: Simulation results showing the effect of the input model on the value achieved by the algorithms. For each model, n and m
are held constant while T varies.

Figure 3: Nash Social Welfare achieved by
the algorithms, as a fraction of OPT.

Since the
length of the
utility trace is
shorter when
profiled un-
der boosted
power, we
use linear
interpolation
to extend
the shorter
trace. Thus,
for each
application a,
we estimate the base power utility (ubase

a,t) and boosted power utility
(uboost
a,t) in each round.
In our instance, there are two power boosts to be allocated.

Therefore, at each round there are
(
12
2

)
alternatives, one for each

pair of applications. For an alternative j corresponding to power
boosts for applications a and b, we have that Vt(a, j) = uboost

a,t ,
Vt(b, j) = uboost

b,t , and Vt(c, j) = ubase
c,t for all other applications

c 6= a, b. We have 120 rounds in the instance we tested.
The Nash Social Welfare achieved on this instance is shown in

Figure 3, normalized against OPT. Most striking is the poor perfor-
mance of STOCHASTIC. We hypothesize that this is due to some of
the applications having long stretches of consecutive rounds where
they achieve zero utility for all allocations, followed by short pe-
riods with positive reported utility. For these applications, the pat-
tern of valuations looks most like the alternating distribution, where
STOCHASTIC also performed poorly.

Also notable is the performance of LINEARGREEDY, which per-
forms roughly twice as well as GREEDY and UPDATE. However,
both of these consistently outperformed LINEARGREEDY for our
simulated data. It is not yet clear to us whether there is a general
structural property of this dataset which lends itself to LINEAR-

GREEDY, or if its good performance was simply a chance occur-
rence.

Runtime results are similar to those presented in Section 6.1,
with one exception. The time taken to solve the offline instance
is 384 seconds, whereas UPDATE takes only 108 seconds. This
provides evidence that, for large instances, the optimal MICP is
prohibitively slow compared to our online algorithms. For compar-
ison, the three other algorithms each ran in less than 0.2 seconds.

7. STRATEGIC ISSUES
In this section, we discuss strategic incentives of the agents that

arise in the dynamic setting. We emphasize again that, while we
have no formal results regarding incentives, and what we do know
is mostly negative, we consider the multiple objective framework
from Section 1 to be important and interesting in and of itself, and
here there are no strategic concerns. Of course, we consider the
strategic aspect to be very interesting also and believe it to be a
fruitful area for generating research questions.

Without the upper bound on valuations, K, we might be wor-
ried about agents drastically overreporting their valuations. For in-
stance, an agent could misreport some high valuation N in the first
round and have their preferred alternative chosen. To compensate
for this utility counting against them in the next round, they could
report valuations on the order of N2, then N4, etc. Of course, with
our upper bound in place, such a strategy would have to stop some-
where and could not be used to dominate every round (as it could
if there was no bound).

Still, the setup and approaches described in this paper are highly
vulnerable to strategic behaviour by the agents. The reason for
this is that it is impossible to distinguish between an agent that is
genuinely unhappy with choices made in previous rounds, and an
agent simply pretending to be unhappy with previous alternatives.
If we wish to compensate the former agent for their unhappiness,
we must allow for the possibility of being gamed by the latter. This
is essentially the free-rider problem well-known to economists (see,

e.g., [12] for a discussion).
There are many interesting and unresolved questions in this do-

main. While we can not hope for strategy-proofness in the most
general setting, are there restricted settings in which we do regain
(limited) strategy-proofness? For instance, can we limit the expres-
siveness allowed to the agents in exchange for strategy-proofness?
Can we say anything about the case where alternatives are simply
different allocations of private goods (so that no agent may benefit
directly from ‘free-riding’ on another agent’s high valuation)?

Even in the general setting, it may be true that agents never have
an incentive to over-report their valuation in the case that T = ∞.
Intuitively, if the algorithm believes the agent has more utility than
they really do, it can only hurt the agent in future rounds. However,
we have neither a proof nor a counter-example to this (imprecise)
statement.

8. APPLICATIONS

8.1 Voting
Our setup can be directly applied to voting, where agents are

voters who report a utility for each of the alternatives. If voters are
required to report only an ordering over alternatives within each
round, then we can simply infer utilities according to a chosen scor-
ing vector. For example, we could set V (i, j) = 1 if alternative j
is voter i’s most preferred alternative and 0 otherwise (the plurality
scoring vector), or V (i, j) = m − k when j is ranked k-th in i’s
preference order (the Borda utility vector).

An interesting direction for future work is to investigate what
social-choice theoretic properties are satisfied by the Nash social
welfare in this repeated setting. One weak property is unanim-
ity, which states that if all voters rank the same alternative at the
top of their ordering, then that alternative should be chosen (in the
dynamic setting we could require this on a round-by-round basis).
Clearly all of the algorithms presented in this paper satsify this con-
dition for all monotone scoring vectors. Some other fundamental
axioms also extend naturally to the dynamic setting, for example
anonymity and neutrality (which we define for the dynamic setting
in Section 2).

For some axioms, however, it is not so clear how to extend to the
dynamic setting. For instance, consider the Condorcet criterion,
which states that any alternative which achieves a pairwise major-
ity against all other alternatives should be chosen. This makes sense
in the one-shot setting, but maybe less sense in the dynamic case.
Suppose that there are two alternatives, A and B, and that 51% of
voters prefer A to B in every round. Then the Condorcet crite-
rion appears to say that we should choose A in every round, while
fairness considerations dictate choosing B at least occasionally. It
is not clear how we would extend the Condorcet criterion to the
dynamic setting and, if we cannot, we may need novel axioms.

There is a natural link between repeated elections and the theory
of multi-winner elections. In multi-winner elections, not only do
we want to choose popular alternatives, but we also want to repre-
sent as many voters as possible, for which several rules have been
designed [10, 20, 17]. Consider an election where the aim is to
choose a committee of size k < m. This is exactly equivalent to
setting T = k and choosing a single distinct winner at each round,
while also imposing the restriction that voters do not change their
votes between rounds. Thus we can view multi-winner elections
as a special case of repeated elections. It would be interesting to
check whether any desiderata in the context of multi-winner elec-
tions extend naturally to the repeated setting.

8.2 Allocating Shared Resources

Consider a situation in which a group of agents take turns being
allocated a shared resource for discrete units of time. Examples
include allocating supercomputer time among members of a uni-
versity department or assigning the use of a holiday home owned
jointly by several people. In both cases, demand varies across time
intervals and across agents. For instance, people who like skiing
may want use of the holiday home in the winter, while those who
like hiking may prefer a different season.

Another interesting aspect of these situations is that our notion
of fairness may not be to treat all agents exactly equally. For in-
stance, if people contributed unequally to the purchase of the hol-
iday home, the group may decide that someone who paid twice as
much as another person ‘deserves’ to get twice the benefit from the
home. In the supercomputer example, we may wish to allocate time
based on the amount of grant money contributed to the purchase of
the machine (for example).

In these cases we may wish to generalize the Nash social welfare
to the Cobb-Douglas welfare. The Cobb-Douglas welfare for utility
vector v, CD(v), is given by

CD(v) =

n∏
i=1

v(i)αi ,

where
∑n
i=1 αi ≤ 1. The case where all αi = 1

n
is the special

case of Nash social welfare, but setting other values of αi allows us
to prioritize some agents over others. It is illuminating to consider
the simple case where all agents have a common unit of utility (say,
dollars). In this case, the Nash social welfare is maximized when
all agents receive exactly the same utility. If we generalize the co-
efficients, then the Cobb-Douglas welfare is maximized when the
agents receive utility in exactly the ratio of their exponents αi. So
if agent i contributed twice as much money to the purchase of the
holiday home as agent j, simply set αi = 2αj .

9. CONCLUSION
Election designers and social choice researchers often do not

consider the fact that many elections are conducted as sequences
of related elections. In this work, we have provided a framework
to allow for the design and analysis of dynamic election protocols,
and repeated decision making rules generally. We have presented
four candidate online algorithms for solving these dynamic prob-
lems. Our simulations do not determine a clear winner, but instead
suggest that the right choice of algorithm is highly dependent on
the setting and the model of how agents’ valuations change over
time.

Our work is preliminary, and leaves a lot of scope for future re-
search in addition to the specific directions already discussed. One
direction would be to design a more precise model of voter pref-
erences, possibly modeling changing preferences by an MDP as
has been done in [9, 24]. We have also not considered modeling
discounting of the agents’ utilities. It would also be nice to have
provable guarantees on the regret of the greedy algorithms.

Acknowledgments
We sincerely thank Songchun Fan for sharing the data used in Sec-
tion 6.2. We are thankful for support from NSF under awards
IIS-1527434, IIS-0953756, CCF-1101659, CCF-1149252 (CA-
REER), CCF-1337215 (XPS-CLCCA), SHF-1527610, and AF-
1408784, ARO under grants W911NF-12-1-0550 and W911NF-
11-1-0332, and a Guggenheim Fellowship. This work is also sup-
ported by STARnet, a Semiconductor Research Corporation pro-
gram, sponsored by MARCO and DARPA. This work was done in
part while Conitzer was visiting the Simons Institute for the Theory
of Computing. Any opinions, findings, conclusions, or recommen-
dations expressed in this material are those of the authors and do
not necessarily reflect the views of these sponsors.

REFERENCES
[1] IntelÂő 64 and ia-32 architectures software developer’s

manual. https://www-ssl.intel.com/content/
dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-
developer-vol-3b-part-2-manual.pdf.

[2] Movielens.
http://grouplens.org/datasets/movielens/.

[3] Us census data (1990) data set.
https://archive.ics.uci.edu/ml/datasets/
US+Census+Data+(1990).

[4] Web data commons: Hyperlink graphs.
http://webdatacommons.org/hyperlinkgraph/
index.html.

[5] S. Agrawal and N. R. Devanur. Fast algorithms for online
stochastic convex programming. In Proceedings of the
Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1405–1424. SIAM, 2015.

[6] M. Aleksandrov, H. Aziz, S. Gaspers, and T. Walsh. Online
fair division: analysing a food bank problem. In Proceedings
of the 24th International Joint Conference on Artificial
Intelligence (IJCAI-15), 2015.

[7] A. Andersson, M. Tenhunen, and F. Ygge. Integer
programming for combinatorial auction winner
determination. In Proceedings of the Fourth International
Conference on Multiagent Systems, pages 39–46. IEEE,
2000.

[8] H. Aziz, M. Brill, V. Conitzer, E. Elkind, R. Freeman, and
T. Walsh. Justified representation in approval-based
committee voting. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, pages 784–790, Austin,
TX, USA, 2015.

[9] C. Boutilier and A. D. Procaccia. A dynamic rationalization
of distance rationalizability. In AAAI, 2012.

[10] J. R. Chamberlin and P. N. Courant. Representative
deliberations and representative decisions: Proportional
representation and the Borda rule. American Political
Science Review, 77(03):718–733, 1983.

[11] R. Cole and V. Gkatzelis. Approximating the Nash social
welfare with indivisible items. In Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of
Computing, pages 371–380. ACM, 2015.

[12] R. Cornes and T. Sandler. The theory of externalities, public
goods, and club goods. Cambridge University Press, 1996.

[13] A. Darmann and J. Schauer. Maximizing Nash product social
welfare in allocating indivisible goods. European Journal of
Operational Research, 247(2):548–559, 2015.

[14] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant resource fairness: Fair
allocation of multiple resource types. Proceedings of the 8th
USENIX conference on Networked systems design and
implementation, pages 24–24, 2011.

[15] M. Guo, V. Conitzer, and D. M. Reeves. Competitive
repeated allocation without payments. In Proceedings of the
Fifth Workshop on Internet and Network Economics (WINE),
pages 244–255, Rome, Italy, 2009.

[16] I. Kash, A. D. Procaccia, and N. Shah. No agent left behind:
Dynamic fair division of multiple resources. Journal of
Artificial Intelligence Research, pages 579–603, 2014.

[17] D. M. Kilgour. Approval balloting for multi-winner
elections. In Handbook on approval voting, pages 105–124.
Springer, 2010.

[18] D. Lehmann, R. Müller, and T. Sandholm. The winner
determination problem. Combinatorial auctions, pages
297–318, 2006.

[19] C. Lucchese, S. Orlando, R. Perego, and F. Silvestri.
WebDocs: a real-life huge transactional dataset. In Workshop
on Frequent Itemset Mining Implementations, 2004.

[20] B. L. Monroe. Fully proportional representation. American
Political Science Review, 89(04):925–940, 1995.

[21] J. F. Nash Jr. The bargaining problem. Econometrica:
Journal of the Econometric Society, pages 155–162, 1950.

[22] D. Parkes, A. Procaccia, and N. Shah. Beyond dominant
resource fairness: Extensions, limitations, and
indivisibilities. In ACM Conference on Electronic
Commerce, pages 808–825. ACM, 2012.

[23] D. C. Parkes, R. Cavallo, F. Constantin, and S. Singh.
Dynamic incentive mechanisms. AI Magazine, 31(4):79–94,
2010.

[24] D. C. Parkes and A. D. Procaccia. Dynamic social choice
with evolving preferences. AAAI, 2013.

[25] A. D. Procaccia. Cake cutting: not just child’s play.
Communications of the ACM, 56(7):78–87, 2013.

[26] S. Ramezani and U. Endriss. Nash social welfare in
multiagent resource allocation. Springer, 2010.

[27] T. Sandholm. Algorithm for optimal winner determination in
combinatorial auctions. Artificial intelligence, 135(1):1–54,
2002.

[28] J. Stamper, A. Niculescu-Mizil, S. Ritter, G. Gordon, and
K. Koedinger. Algebra i 2006-2007. challenge data set from
kdd cup 2010 educational data mining challenge.
http://pslcdatashop.web.cmu.edu/KDDCup/
downloads.jsp.

[29] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster computing with working sets. In
Proceedings of the 2nd USENIX Conference on Hot Topics in
Cloud Computing, volume 10, page 10, 2010.

https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
http://grouplens.org/datasets/movielens/
https://archive.ics.uci.edu/ml/datasets/US+Census+Data+(1990)
https://archive.ics.uci.edu/ml/datasets/US+Census+Data+(1990)
http://webdatacommons.org/hyperlinkgraph/index.html
http://webdatacommons.org/hyperlinkgraph/index.html
http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp
http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp

	Introduction
	Preliminaries
	Greedy Algorithms
	Computational Considerations
	Axiomatization of LinearGreedy

	Distributional Update Algorithm
	Stochastic Convex Programming Approach
	Experiments
	Simulated Data
	Real Data: Power Boost Allocation

	Strategic Issues
	Applications
	Voting
	Allocating Shared Resources

	Conclusion

