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ABSTRACT
Rank aggregation is the problem of generating an overall
ranking from a set of individual votes. The aim in doing
so is to produce a ranking which is as close as possible to
the (unknown) correct ranking for a given distance mea-
sure such as the Kendall-tau distance. The challenge is that
votes are often both noisy and incomplete. Existing work
has largely focused on finding the most likely ranking for a
particular noise model (such as Mallows’). Instead, here we
focus on minimising the error, i.e., the expected distance be-
tween the aggregated ranking and the true underlying one.
Specifically, we show that the two objectives result in differ-
ent rankings, and that these differences become especially
significant when many votes are missing. Furthermore, we
show how to compute local improvements on existing rank-
ings to reduce the expected error. Finally, we run extensive
experiments on both synthetic and real data to compare dif-
ferent aggregation rules. In particular, a surprising result is
that for votes generated according to the Mallows’ model,
Copeland often outperforms Kemeny optimal, despite the
latter being the maximum likelihood estimator.

Categories and Subject Descriptors
I.2.11 [Distributed AI]: Multiagent systems

Keywords
Economic paradigms: Social Choice Theory

1. INTRODUCTION
Rank aggregation is the problem of producing a complete
ranking from votes cast by individual agents, where the votes
can be seen as noisy and incomplete estimates of a ranking
that is an underlying ground truth. This perspective on vot-
ing dates back to Marquis de Condorcet [25], who said that
voting may be regarded as a way of uncovering this ground
truth. There are many practical examples1 of rank aggre-
gation, including websites that produce rankings of restau-
rants, books and movies based on crowdsourced contribu-

1http://www.tripadvisor.com/Restaurants,
http://www.goodreads.com/choiceawards
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tions from their users, scientific communities that use votes
from their members to select which project proposals to fund
or which papers to accept [18, 5], or peer grading in massive
online open courses [3]. Another prominent application is
the use of rank aggregation to produce a meta search engine
from the search results of individual search engines [13]. In
these settings votes are not only noisy, but also incomplete
since typically only a subset of the candidates (e.g., restau-
rants or websites) is ranked by any single individual.

To find a ranking which is close to the ground truth, most
current work assumes a probabilistic noise model such as
Mallows [22, 32], and then aims to maximise the likelihood
of an aggregate ranking. In Mallows’ model, a probability
is assumed for ordering a pair of candidates correctly, and
votes are produced by repeatedly ordering all pairs until this
results in a consistent (acyclic) ranking. For this model, it
has been shown that Kemeny’s rule is the maximum likeli-
hood estimator (MLE) [32]. Similarly, some other commonly
used voting rules are MLEs for specific noise models [9, 8].

However, in most settings the aim should arguably not be
to find a most likely explanation of the noisy observations,
but to find a ranking that gives the best results when used
in subsequent decision making. When votes are noisy and
incomplete, many rankings may have a likelihood of similar
magnitude, and there may even be multiple rankings with
the maximum likelihood. In all these cases, the probability
that a ranking with maximum likelihood is the true rank-
ing is small. When an aggregated ranking is used, success
does not depend on having found the true ranking exactly.
Rather, it is important to construct and use a ranking for
which the distance to the true ranking is as small as possible
in expectation. This means that we should aim to minimise
the expected distance (for a particular measure) of an ag-
gregate ranking to the true ranking — which we term the
error — instead of aiming for a ranking that maximises the
likelihood. In contrast to MLEs, to date it is still unknown
which commonly used voting rules perform best regarding
this objective.

Against this background, in this paper we assume noise ac-
cording to the Mallows’ model, and for this model we make
the following novel contributions. (i) We show that the
MLE is not always minimising the error. (ii) We show that
computing the error is #P-hard. (iii) We show that local
Kemenisation, a computationally simple procedure for im-
proving aggregated rankings in terms of their likelihood, also
reduces the error, and (iv) through experiments on both syn-
thetic and real data, we show how noise and incompleteness
influence the performance of a large set of voting rules.



The paper is structured as follows. In Section 2 we intro-
duce notation, the distance measure used, and the model for
noise and incompleteness, and we show that Kemeny’s rule
is the MLE also for the model including incompleteness. In
Section 3 we then formally define the objective of minimis-
ing the error and show how this is different from maximising
the likelihood. We give the hardness proof of computing the
error and show that local Kemenisation reduces the error. In
Section 4 we first introduce the voting rules and their adap-
tations to settings with incomplete rankings. Subsequently,
we evaluate these rules under varying levels of noise and
incompleteness for both synthetic votes as well as on two
ranking data sets from PrefLib [24]. Section 5 discusses re-
lated work and Section 6 concludes.

2. MODEL
The aim in this paper is to find rank aggregation rules which
minimise the expected error, where the error is given by the
Kendall-tau distance to the true ranking (as defined below).
Formally, let A = {1, 2, . . . ,m} denote a set of candidates or
alternatives, where m = |A| is the number of alternatives to
be ranked. In addition, let N = {1, 2, . . . , n} denote the set
of n agents or voters. Each agent has an incomplete ranking
over the set of candidates. This is modeled as a complete or-
der on a subset of the candidates.2 We thus define a vote by
agent k as a ranking, i.e., linear order, over a subset Ak ⊆ A
of the candidates, denoted by σk : Ak → {1, 2, . . . , |Ak|}.
Here, σk(i) defines the rank of candidate i (lower is bet-
ter). We also use i �σk j to denote σk(i) < σk(j), i.e., i
is ranked higher than j according to agent k. Furthermore,
|σk| ≤ m is the number of candidates voted for by agent k.
Note that σk(j) is undefined for any candidate j ∈ A \ Ak.
In such a case we say the vote is incomplete. By inserting
remaining alternatives A \Ak in an incomplete ranking, we
can construct a potential underlying complete ranking of all
alternatives. This is called a completion (or extension [17]).
Furthermore, we sometimes use D = {σ1, . . . , σn} (for ob-
served data) to denote all votes.

If we have access to the underlying true ranking, we can
measure the quality of a voting rule on a given profile of
votes by the distance of the aggregated ranking to the true
ranking. The most common distance metric, and the one we
use in this paper, is the Kendall-tau distance [16]. In detail,
the Kendall-tau distance K counts the pairs of alternatives
that are differently ordered by σ than by τ .

K(σ, τ) = |{{i, j} ⊆ A : i �σ j and i ≺τ j}| (1)

Such a differently ordered pair i and j is called an inver-
sion. The Kendall-tau distance can be found in O (m lnm)
using a folk algorithm variant of merge sort called “count
inversions”.

The rule selecting an aggregate ranking τ∗ which min-
imises the Kendall-tau distances to all votes is called the
Kemeny optimal aggregation rule, and is given by:

τ∗ = arg min
τ

∑
k∈N

K(σk, τ) (2)

A more convenient way to write this is:

τ∗ = arg min
τ

∑
{i,j}⊆A:i�τ j

nd(i, j|D), (3)

2This differs from [31] who consider any partial order.

where nd(i, j|D) = |{k ∈ N : i ≺σk j}| is the number
of voters who disagree with the order i � j. Likewise,
na(i, j|D) = |{k ∈ N : i �σk j}| denotes the number of
agreements. Note that, in case of complete rankings, we
have that na(i, j|D) + nd(i, j|D) = n. However, this is not
necessarily the case when rankings are incomplete.

We now describe the model for noisy and missing observa-
tions/votes. We assume noise according to the well-known
Mallows’ model for a probability p > 0.5. In this model, the
likelihood of a ranking τ given observed votes D is:

L(τ |D) =
1

Z1

∏
{i,j}⊆A:i�τ j

pna(i,j|D)(1− p)nd(i,j|D), (4)

where Z1 is a (normalisation) constant. It has been shown
that Kemeny optimal chooses the ranking with the highest
likelihood [32].

We extend this model to incomplete rankings by introduc-
ing the probability of a vote missing, where this probability
is given by q. We assume that this probability is indepen-
dent of the position in the true ranking. Incorporating this
probability, we can compute the likelihood of a ranking τ
given observations D as follows:

L′(τ |D) = L(τ |D)
1

Z2

∏
k∈N

(1− q)|σk|qm−|σk|. (5)

This assumption underlying this model has sometimes been
called the “missing at random assumption” [14].

It is easy to see that Kemeny optimal still maximises the
likelihood, irrespective of the value of q.

Theorem 1. Kemeny optimal is the maximum-likelihood
estimator for Equation 5.

Proof. The ranking which maximises the likelihood is
also maximising the log-likelihood. This allows us to drop
all constants, including the normalisations Z1 and Z2 and
even the incompleteness probabilities. Therefore:

arg max
τ
L′(τ,D) = arg max

τ
ln(L′(τ,D)) =

arg max
τ

∑
{i,j}⊆A:i�τ j

(na(i, j|D) ln(p) + nd(i, j|D) ln(1− p))

Since p > 0.5 we know that ln(p) > ln(1 − p), and because
the total sum of ranked pairs is constant, we conclude that
this log-likelihood is maximised if the number of agreements
is (i.e., the number of disagreements is minimised).

3. MINIMISING THE ERROR
So far we have discussed maximising the likelihood. Instead,
the goal in this paper is to minimise the rank aggregation
error, which we define as the expected Kendall-tau distance.
Formally this is given by:

KT-error(τ,D) =
∑
τ ′∈T

K(τ, τ ′) · L′(τ ′|D), (6)

where T is the set of all possible rankings.
Below we first discuss several examples to show that the

two aims can result in different rankings, and then discuss
the computational hardness of minimising the error and a
local search approach for finding incremental improvements.



3.1 Likelihood vs. Error
Minimising the expected Kendall-tau distance and maximis-
ing the likelihood result in different rankings. We start by
showing that this is true for instances with candidates that
do not occur in any vote. We call such a candidate free.

Definition 1. A candidate a ∈ A is free when none of
the votes D contain a.

Example 1. Let three candidates a, b, c be given, and one
agent with vote a �σ1 b. Kemeny’s rule is indifferent be-
tween the three possible aggregate rankings (without noise
(i.e., p = 1), each has a likelihood of 1

3
). The expected

Kendall-tau distances for each of these, however, differ:

τi ranking L(τi|D) K(τi, τj) KT-error(τi, D)
τ1 a � b � c 1

3
0 1 2 1

τ2 a � c � b 1
3

1 0 1 2
3

τ3 c � a � b 1
3

2 1 0 1

Because the distance of a � c � b to each of the other rank-
ings is only 1, it has a lower expected error. Note that the
free candidate here is in the middle of the ranking.

This example shows that minimising the error produces a
single natural ranking with the free candidate in the mid-
dle, where the likelihood is the same for multiple rankings.
Generally:

Proposition 1. On an instance D with free candidates:

1. Kemeny’s rule is indifferent between the position of free
candidates (i.e., each position is equally likely);

2. The KT-error is minimised when free candidates are
positioned in the median of the ranking.

Proof. Let a ranking π of m candidates be given. Let
T be the set of all rankings of length m, L(τ |D) denote the
likelihood of a ranking τ ∈ T , and let πi (or τi) denote the
ranking π (or τ , respectively) where the free candidate is
placed at position i ∈ {0, . . . ,m}.

For the first statement, since the free candidate does not
appear in D, each position is equally likely, and therefore,
for any τj the likelihood L(τj |D) = c · L(τ |D), with c =

1
m+1

. Therefore, with Theorem 1, Kemeny’s rule places free
candidates at every position with equal probability.

For the second statement, we show that inserting a free
candidate in the middle of the ranking minimises the ex-
pected error. By definition of the KT-error and L(τj |D) =
c · L(τ |D) from above, we have that

KT-error(πi, D) =
∑
j

∑
τ∈T

K(πi, τj) · c · L(τ |D).

The distance (error) of πi to τj is equal to the distance of
π to τ except for the difference in the position of the free
candidate, i.e., |i− j|. Consequently,

KT-error(πi, D)
= c ·

∑
j

∑
τ∈T (K(π, τ) + |i− j|) · L(τ |D)

= KT-error(π,D) + c ·
∑
j |i− j| ·

∑
τ∈T L(τ |D)

This is minimal if and only if
∑
j |i − j| =

∑i−1
j=0(i − j) +∑m

j=i+1(j−i). This is minimal for i = m+1
2

. With induction
this also holds for a set of free candidates.

Next, we show that the difference between the two objectives
goes even beyond free candidates, and can result in different
rankings even when the votes are complete.

Example 2. Let p = 0.7 and five complete votes be given:
twice a � b � c, twice c � a � b and once b � c � a.
τk ranking

∑
na

∑
nd L(τk|D) KT-error

τ0 a � b � c 9 6 0.361 1.123
τ1 a � c � b 6 9 0.028 1.877
τ2 b � a � c 8 7 0.155 1.035
τ3 b � c � a 7 8 0.066 1.965
τ4 c � a � b 9 6 0.361 1.123
τ5 c � b � a 6 9 0.028 1.877

Then the Kemeny rule selects a � b � c or c � a � b, but
the ranking that minimises the KT-error is b � a � c.

Also here, we see that the MLE is not minimising the ex-
pected error.

3.2 Hardness
Finding the ranking with the largest likelihood (i.e., Kemeny
optimal) is NP-complete [15]. Towards establishing the com-
putational complexity of finding an aggregate ranking with
the minimum error, we can show that the problem of com-
puting the error of a (single) aggregate ranking is #P-hard
(even) when there is no noise in the data D. The proof uses
a reduction from computing the number of linear extensions
of a partial order, which is #P-complete [2].

In the proofs below, let TD denote the set of extensions of
the partial order defined by the votes of D and xD = |TD|
the number of such extensions. For our proof we need the
following lemmas.

Lemma 1. L(τ |D) is the same for all consistent rankings
τ ∈ TD if D is generated from a model without noise, and
this is equal to 1

xD
.

This follows because incompleteness is determined indepen-
dently from the position in the ranking.

If D does not imply a complete linear order, there is a
pair a, b of unordered alternatives. We express the number
of consistent extensions of D in terms of the numbers of
extensions for both possible orders for a and b as follows.

Lemma 2. Given a ranking π and data D without noise
on a set of alternatives A. Let a, b ∈ A be given. Let Dab
denote D ∪ {(a, b)}. Then

KT-error(π,D) · xD = KT-error(π,Dab) · xDab
+ KT-error(π,Dba) · (xD − xDab).

Proof. With Lemma 1, L(τ |D) = 1
xD

. Applying the

definition of KT-error, we write

KT-error(π,D) · xD =
∑
τ∈TD

K(π, τ)

=
∑
τ∈TDab

K(π, τ) +
∑
τ∈TDba

K(π, τ).

Using the definition of KT-error and of Dab and Dba the
result then follows.

The idea of the proof below is now to repeatedly use this
fact that the number of consistent extensions of D is equal
to the sum of the number of consistent extensions of D ∪
{(a, b)} and of D ∪ {(b, a)}. By repeatedly adding (yet)
unordered pairs of a and b to D, we collect a polynomial
number (at most m2) of linear constraints on the numbers
of consistent extensions of increasingly larger sets of votes,
ultimately leading to a single consistent extension.

Theorem 2. Given data D generated from a model with-
out noise, determining the expected error of an aggregate
ranking π is #P-hard.



Proof. We show this by a (polynomial) reduction from
the problem of computing the number of linear extensions
of a partial order �. Let such a partial order � over a set
of candidates A be given. First, for each pair of candidates
(a, b) with a � b in the partial order, insert an incomplete
vote with a before b in D. Let a ranking π ∈ TD be given
(e.g., by taking a topological order). Initially, D has x0
consistent extensions. Then execute the following algorithm.

1. Initialise i to 0 and e0 = KT-error(π,D).
2. For every pair (a, b), if adding a � b does not create a

cycle in the majority graph of D then
(a) Increment i, set Dab = D ∪ {(a, b)} and Dba =

D ∪ {(b, a)}.
(b) Let ei = KT-error(π,Dab).
(c) Let Ci denote the constraint ei−1 ·xi−1 = ei ·xi+

KT-error(π,Dba) · (xi−1 − xi).
(d) Let D = Dab.

Let k denote i in the last iteration. All thus found con-
straints Ci are valid because of Lemma 2. When the last
pair of candidates has been added to D, at index k ≤ m2,
there is only one consistent extension, hence xk = 1. If we
know a value xi, we can compute xi−1 using the equality
constraint Ci with both xi and xi−1. So with induction we
can compute x0 in k such steps. This gives us the total
number of consistent extensions of the partial order in poly-
nomial time. Since with this polynomial number of calls to
KT-error we solved a #P-hard problem, we conclude that
computing KT-error is also #P-hard.

3.3 Local Search
Although computing the error for candidate rankings to find
the minimal one does not seem to be feasible, we can improve
a ranking by making local adjustments. In particular, given
a ranking τ , it is easy to determine if, by swapping two
adjacent candidates, we can improve the KT-error.

Theorem 3. Let τab and τba be two equal rankings ex-
cept that two adjacent candidates, a and b, are swapped.
That is, a �τab b and b �τba a. Then: KT-error(τab, D) <
KT-error(τba, D) iff na(a, b|D) > na(b, a|D).

Proof. Let Tab ⊂ T denote the set of all rankings where
a � b (not necessarily adjacent ones) and Tba = T\Tab the
set of all rankings where b � a. Then Tab∪Tba is a partition
of all possible rankings and |Tab| = |Tba|. We can thus write
the KT-error(τ,D) (using Equation 6) as:∑

τ ′∈Tab

K(τ, τ ′) · L(τ ′|D) +
∑

τ ′∈Tba

K(τ, τ ′) · L(τ ′|D).

For τ ∈ Tab, from the definition of the Kendall-tau distance,
we know that K(τba, τ) = K(τab, τ) + 1, and for τ ∈ Tba,
K(τba, τ) = K(τab, τ)−1. Therefore the KT-error(τba, D) is

=
∑
τ∈Tab

(K(τab, τ) + 1) · L(τ |D) (7)

+
∑
τ∈Tba

(K(τab, τ)− 1) · L(τ |D)

=
∑
τ∈Tab

K(τab, τ) · L(τ |D) +
∑
τ∈Tab

L(τ |D)

+
∑
τ∈Tba

K(τab, τ) · L(τ |D)−
∑
τ∈Tba

L(τ |D)

= KT-error(τab, D) +
∑
τ∈Tab

L(τ |D)−
∑
τ∈Tba

L(τ |D).

Note that
∑
τ∈Tab

L(τ |D) +
∑
τ∈Tba

L(τ |D) = 1, or, more

generally, a constant (normalisation is not relevant here).
We can express the likelihood that a comes before b given

the data as:∑
τ∈Tab

L(τ |D) = L(a � b|D) =
1

Z
pna(a,b|D)(1− p)na(b,a|D).

Using Equation 7 we thus can write the difference between
errors, KT-error(τba, D)−KT-error(τab, D), as:

1

Z

(
pna(a,b|D)(1− p)na(b,a|D) − pna(b,a|D)(1− p)na(a,b|D)

)
Since p > 0.5, this difference is strictly positive (negative)

iff pna(a,b|D) > pna(b,a|D) (or pna(a,b|D) < pna(b,a|D)).

It turns out that repeatedly applying this rule until a local
optimum is found has been called local Kemenisation [13]. It
has been shown that any ranking thus produced satisfies the
generalised Condorcet criterion (i.e., if there is a partition
of the candidates (A1, A2) such that for every a ∈ A1 and
b ∈ A2 the majority prefers a to b, then every a ∈ A1 must
be ranked above every b ∈ A2 [28]). The above proof adds
that this is locally minimising the KT-error as well. Note
that although the proof assumes Mallows’ model, it seems
intuitive for any noise model to swap adjacent candidates if
one is ranked more often above the other, and that this is
independent of the (often unknown) value for p in the model.

4. EXPERIMENTS
We now empirically evaluate a range of voting rules, to de-
termine their performance in settings with incomplete rank-
ings. To this end, we first discuss the experimental setup
and data, followed by the voting rules and modifications to
deal with incomplete rankings. Then we discuss the results.

4.1 Setup and Data
We consider two types of experiments: those generated us-
ing synthetic data, and those based on real data from the
PrefLib library [24], specifically the Mechanical Turk Dots
and Puzzle experiments by [23]. We focus on these datasets
since they provide noisy (albeit complete) rankings and they
also include an objective ground truth. In more detail, for
the synthetic data, we use the repeated insertion method dis-
cussed in [10, 20] to generate noisy rankings according to the
Mallows’ model. Furthermore, to generate incomplete rank-
ings, we independently remove each candidate from each
agent with a probability q.

The real data consists of several datasets, each containing
up to 800 agents ranking 4 candidates. In the Dots exper-
iment, each voter was asked to rank 4 images according to
the number of dots they contained, whereas in the Puzzle
game the voters were asked to rank sliding puzzles according
to how close they were to the solution (see [23] for details).
The votes contain natural noise and are complete. To make
the votes incomplete, we remove each candidate from each
agent with probability q as before. In addition, we randomly
select n agents without replacement (where we vary n).

We repeat each experiment 1000 times with resampled
random values for candidates to determine the order in case
of ties in the scoring rules, and we measure the average
Kendall-tau distance (i.e., the number of inversions) of the
aggregated ranking to the true ranking. Note that this is
consistent with our objective of minimising the KT-error.



4.2 Voting Rules for Incomplete Votes
We consider the following common voting rules in the liter-
ature on rank aggregation. For each of the rules below, we
also add a variant with local search, where we improve the
rank produced by the corresponding rule by applying the
algorithm described in Section 3.3 until it converges.

Borda.
According to the Borda rule every agent assigns n−j points
to the candidate ranked in position j, which is equal to the
number of candidates it defeats. Candidates are then ranked
according to the sum of points for each candidate, which is
also called the Borda count. However, with incomplete votes,
it is not clear how many points should be awarded to the
candidates ranked by an agent and the ones missing. There
are many variants (see, e.g., [1, 26, 13]) and we consider the
following three: Pessimistic, where ranked candidates con-
tribute a score of (m− σk(i)) and unranked ones contribute
zero points; Optimistic, which is the same except that un-
ranked candidates contribute (m − |σk|); Scaled, where the
score is proportional to the position within the ranked can-
didates, m(|Ak| − σk(i))/|Ak|, and missing candidates con-
tribute zero. We choose these three since they vary widely
in their performance, whereas other variants we tried per-
formed similarly to one of these three.

Spearman’s Footrule.
Spearman’s footrule is another commonly-analysed voting
rule, especially for the Mallows’ noise model, since it is a 2-
approximation of Kemeny optimal but computable in poly-
nomial time. This rule minimises the sum of Spearman’s
distances of the complete ranking to the votes, where the
distance between two rankings σ and τ is given by S(σ, τ) =∑
i∈A |σ(i) − τ(i)|. For complete rankings, this is done by

finding the minimal weighted matching of alternatives to
their ranks in the aggregate ranking, where the weight wij
of a candidate i in position j is given by wij =

∑
k |σk(i)−

j| (computable in O
(
m3
)

using the Hungarian algorithm).
Now, as with Borda, there are several ways to extend this
rule to deal with incomplete votes. We choose Scaled Footrule
Optimal (SFO) from [13] since it is simple and computation-
ally tractable (unlike, e.g., using the induced distance [13]).
In detail, to compute the distance for candidate i at position
j, instead of using σk(i) and j, both of these are scaled ac-
cording to the total number of candidates. Specifically, the
weight is replaced by wij =

∑
k |σk(i)/ |Ak| − j/m|. This

formulation represents the idea that the missing alternatives
are equally spread in between the ranked alternatives.

Copeland.
The Copeland voting rule ranks individual candidates ac-
cording to the number of wins in pair-wise contests mi-
nus the number of losses. This rule can be readily ap-
plied to incomplete settings by only counting pairs when
both alternatives appear in an agent’s ranking. Formally,
let P (i, j) = |{k ∈ A : i, j ∈ Ak ∧ i �σk j}| denote the num-
ber of agents who prefer i to j. Then, candidates i’s score
is computed by:

|{j 6= i : P (i, j) > P (j, i)}| − |{j 6= i : P (i, j) < P (j, i)}|

Candidates then are ranked according to their score in de-
scending order.

Kemeny optimal.
We implement the Kemeny optimal rule by a mixed integer
optimisation problem on the weighted majority graph [7] for
which we (uniform) randomly select one optimal solution.

Optimal.
Computing the KT-error exactly is hard (Theorem 2), but
in practice we can still compute the Optimal for up to 6
candidates using a brute force approach. Specifically, the
KT-error is computed for all possible rankings and then the
one with the minimal KT-error is chosen. Note, however,
that the definition of KT-error for Mallows’ model depends
on the noise probability p. For the synthetic experiments we
simply use the p value that was used for generating the in-
stances. For the experiments with the real data we compute
the KT-error for a range of p values to establish the best
one experimentally. As before, if there are multiple optimal
solutions, we select one randomly.

4.3 Results
Figure 1 shows results using synthetic data with 6 candi-
dates, a Mallows noise probability p = 2

3
and a probability

of candidates missing of q = 0.7 for different values of the
number of agents. The right figure shows the results af-
ter applying local Kemenisation to each of the voting rules.
As expected, having more agents decreases the average dis-
tance to the true ranking for all rules. We also can observe
that Kemeny is indeed not optimal, with on average around
0.5 inversions more than Optimal. Interestingly, Copeland
performs significantly better than Kemeny, and at times on
par with Optimal. Even more striking is the significant im-
provement of most rules by local Kemenisation, which can
be observed by comparing the left to the right figure. We
have similar results for other values for q, but show only
q = 0.7, because here the differences are most pronounced.

This can be seen in Figure 2, where we vary the probability
q of missing candidates and show the average distance for
all rules for a scenario with p = 2

3
and 25 agents. Similar

to the previous results, we see that Copeland consistently
outperforms Kemeny, and that Kemeny is relatively far from
optimal. Compared to the previous figure, we see here that
differences between the rules are less pronounced for lower
values of q. In particular, after applying local Kemenisation,
none of the rules are statistically different up to q = 0.6.

The results so far have considered data where the syn-
thetic noise model is consistent with our objective. We now
consider the real data, which uses natural noise generated
through experiments rather than a particular model. To this
end, Figures 3 and 4 show the results from the Dots dataset
(number 1) and Puzzle (number 2) respectively, where we
vary the number of agents and set the probability of missing
a candidate to q = 0.7. Surprisingly, trends for both datasets
are very similar to the synthetic data: despite the fact that
Optimal is not necessarily optimal with real data (since it
assumes the Mallows’ model), it significantly outperforms all
other voting rules. Furthermore, Copeland outperforms Ke-
meny in most instances. Finally, again despite the fact that
it assumes Mallows’ model, local Kemenisation significantly
improves most voting rules, except of course Kemeny and
Optimal, which are already locally optimal, and Copeland
for some instances (within the standard error). We can see
the same trend for the other Dots and Puzzle instances (re-
sults not shown).



5 10 15 20 25 30 35 40 45 50
Number of Agents

1

2

3

4

5

6

7
A

v
e
ra

g
e
 E

rr
o
r

Copeland

ScaledFootruleOptimal

ScaledBorda

OptimisticBorda

PessimisticBorda

Kemeny

Optimal

5 10 15 20 25 30 35 40 45 50
Number of Agents

1

2

3

4

5

6

7

A
v
e
ra

g
e
 E

rr
o
r

LocalCopeland

LocalScaledFootruleOptimal

LocalScaledBorda

LocalOptimisticBorda

LocalPessimisticBorda

LocalKemeny

Optimal

Figure 1: More agents decrease the average distance for all rules (6 candidates, p = 2
3
, and q = 0.7). Copeland

performs better than Kemeny, and local Kemenisation (right) significantly improves most other rules.
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Figure 2: Missing candidates increase the average distance for all rules (6 candidates, p = 2
3
, and 25 agents).
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Figure 3: The relative performance of the rules on the Dots data set 1 with a probability of removing a
candidate of 0.7 is similar to the synthetic data.



Table 1: The average distances for Optimal for different values of p are given on the Dots 1 problem instance
for 10 agents (top) and 50 agents (bottom) and for probabilities 0.0–1.0 of missing candidates. Except for
p = 0.5 these differences are statistically insignificant (standard errors of above 0.02).

p 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.5000 3.004 3.03 2.964 3.063 2.998 3.002 2.974 2.94 2.984 2.946 3.055
0.6225 1.615 1.679 1.815 1.965 2.054 2.192 2.315 2.446 2.691 2.815 3.055
0.7311 1.606 1.683 1.822 1.991 2.059 2.203 2.314 2.435 2.681 2.844 3.055
0.8176 1.605 1.685 1.82 1.989 2.057 2.207 2.335 2.439 2.705 2.81 3.055
0.8808 1.607 1.684 1.819 1.992 2.059 2.212 2.326 2.43 2.694 2.815 3.055
0.9241 1.611 1.69 1.824 1.997 2.061 2.208 2.346 2.447 2.68 2.813 3.055
0.9526 1.611 1.676 1.824 1.989 2.055 2.216 2.323 2.451 2.703 2.816 3.055

0.5000 2.946 2.936 3.006 3.083 3.023 2.978 3.016 2.986 3.069 3.125 2.964
0.6225 0.733 0.834 0.89 1.006 1.274 1.405 1.597 1.887 2.2 2.684 2.964
0.7311 0.731 0.833 0.898 1.02 1.285 1.429 1.627 1.877 2.185 2.67 2.964
0.8176 0.733 0.834 0.9 1.023 1.285 1.424 1.629 1.884 2.207 2.66 2.964
0.8808 0.734 0.834 0.9 1.023 1.284 1.427 1.628 1.89 2.189 2.7 2.964
0.9241 0.732 0.832 0.899 1.025 1.284 1.424 1.626 1.88 2.186 2.71 2.964
0.9526 0.731 0.834 0.901 1.024 1.284 1.429 1.627 1.885 2.197 2.653 2.964
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Figure 4: The performance of the rules on this Puzzle data set 2 with q = 0.7 shows the same trends as for
Dots.
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Figure 5: Local Kemenisation reduces the error drastically with 100 candidates, 40 agents and p = 2
3
.



We furthermore considered the effect of the unknown noise
probability p on the performance of Optimal with real data.
The results are shown in Table 1 for a range of q and p values,
where the p values are computed using a generalised noise
model [12] p = eα

1+eα
and α ∈ {0, 0.5, . . . , 3}. Interestingly,

the results are not statistically significant for different values
of p (except 0.5), suggesting that Optimal is robust with
respect to the choice of p.

We also produced synthetic experiments for larger num-
bers of candidates (100) and more agents (up to 200). Al-
though we were unable to compute Kemeny and Optimal
rankings for these settings, the trends for the remaining vot-
ing rules were largely the same. A representative example
in shown in Figure 5. As before, local Kemenisation signifi-
cantly reduces the error.

5. RELATED WORK
The average Kendall-tau distance (among other measures) is
often used in experiments with noisy and incomplete data to
compare the effectiveness of a set of rules over a large set of
problem instances, e.g., [11, 13]. However, this is typically
done implicitly and without noticing that minimising this
error is a significantly different objective from maximising
the likelihood. The objective of minimising the error is first
explicitly mentioned in a technical report [29, Section 5].
They say it is (more) difficult to optimise for this than max-
imising the likelihood (without proof) as “no closed form
solution exists”, which is in line with our hardness result.
Later this statistical decision-theoretic viewpoint on social
choice and the hardness proof have been formalised [27], but
only considers complete votes.

A related argument against using maximum likelihood as
the objective is that optimising for a single noise model may
not be optimal in realistic settings, because the noise could
take unpredictable forms [4, 23]. This has led to the de-
sign of a “modal” ranking rule that is robust against any
“reasonable” noise model [4]. Following a similar argument,
it is relevant to learn a mixture of (Mallows) noise models,
e.g., through a Monte Carlo based approximation [21]. Such
approaches can be seen as complementary to the direction
we take in this paper. In fact, we argue that the ultimate
objective should be to minimise the error based on a learned
mixture of general noise models.

Specifically regarding incomplete votes, some work has
considered machine learning techniques that view the miss-
ing ranking information as hidden variables, which are then
inferred from other votes. For example, Cheng et al. [6]
use the Expectation–Maximisation algorithm. Other exper-
iments with real data show the performance of a number
of “existing, standard, algorithms from machine learning” to
infer the missing information [11]. For an overview of the
workflow of designing social choice mechanisms using ma-
chine learning see the paper by Xia [30].

Much of the work in this area uses information retrieval
as its main application domain (e.g., [13, 19]) and machine
learning is used as an adaptive voting rule which learns how
to rank the documents. An important challenge in this do-
main is scalability, especially for search engines, where the
number of candidates (documents) can be as large as several
billions. So far, this problem has mostly been approached
as a machine learning classification task. However, other
voting rules such as SFO, Borda, and a range of methods
using a Markov decision model of the votes, have been eval-

uated on a web page data set [13]. Consistent with our
findings, their results show that the rule said to be similar
to Copeland (called MC4) performs the best on this set. Im-
portantly, however, the “ground truth” in such applications
is not a full rank, but rather whether a document is rele-
vant or not. As a result, the objective in those approaches
is different (they are more concerned with measures such as
recall and precision and other measures specifically relevant
to information retrieval). Nevertheless, our results support
the main conclusions from these papers in that the Copeland
rule seems an appropriate choice for most levels of noise and
missing candidates.

6. CONCLUSIONS
We have shown that voting rules which maximise the likeli-
hood of a ranking do not necessarily minimise the rank ag-
gregation error, i.e., the expected distance to the true rank-
ing. Specifically, for rank aggregation with significant noise
and missing votes, maximising the likelihood (i.e., using Ke-
meny’s rule assuming Mallows’ model) can result in a signif-
icantly higher error than computationally simpler methods
such as Copeland. While the results are particularly pro-
nounced with missing votes, we have shown that this dis-
crepancy can occur even when votes are complete. Further-
more, we have shown that Optimal performs best in both
synthetic and real data settings, even when we do not know
the noise parameter exactly. In terms of theoretical results,
for Mallows’ model we have shown that computing this error
is hard. Furthermore, we proved that an efficient procedure
called local Kemenisation, which is known to improve the
likelihood, also reduces the error, and that in fact this leads
to a significant performance improvement for varying incom-
pleteness and noise levels.

The next logical step is to design new voting rules with
the objective of minimising the error in settings with incom-
plete and noisy observations. This would be particularly in-
teresting for more general (mixtures of) noise models. These
extensions also give rise to a number of questions regarding
the complexity class of the problems of minimising the rank
aggregation error. In particular, although we showed that
computing the error is #P-hard, determining whether the
complexity of finding the ranking with minimal error for the
Mallows’ model is also #P-hard is still an open problem.
Other extensions include considering different incomplete-
ness models (e.g., where the probability of missing depends
on the position in the true ranking) and different distance
measures (e.g., winner determination, top-k, or more general
weighted measures). Additionally, it would be interesting
to compare existing voting rules to approaches that apply
machine learning methods, both through learning missing
data [11], but also by directly applying classifiers as is com-
mon in the “learning to rank” information retrieval field [19].
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repeated insertion model for rankings: Missing link
between two subset choice models. Psychometrika,
69(1):33–54, 2004.

[11] J. A. Doucette, K. Larson, and R. Cohen.
Conventional Machine Learning for Social Choice. In
Proceedings of the 29th AAAI Conference on Artificial
Intellligence, 2015.

[12] M. Drissi-Bakhkhat and M. Truchon. Maximum
likelihood approach to vote aggregation with variable
probabilities. Social Choice and Welfare,
23(2):161–185, 2004.

[13] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar.
Rank aggregation methods for the web. In 10th Int.
Conf. on World Wide Web, pages 613–622. ACM,
2001.

[14] Z. Ghahramani and M. I. Jordan. Learning from
incomplete data. Technical report, Massachusetts
Institute of Technology, 1995.

[15] E. Hemaspaandra, H. Spakowski, and J. Vogel. The
complexity of Kemeny elections. Theoretical Computer

Science, 349(3):382–391, 2005.

[16] M. G. Kendall. A new measure of rank correlation.
Biometrika, pages 81–93, 1938.

[17] K. Konczak and J. Lang. Voting procedures with
incomplete preferences. In Proc. IJCAI-05
Multidisciplinary Workshop on Advances in Preference
Handling, volume 20, 2005.

[18] A. Kumar and M. Lease. Learning to rank from a
noisy crowd. In Proceedings of the 34th international
ACM SIGIR conference on Research and development
in Information Retrieval, pages 1221–1222. ACM,
2011.

[19] T.-Y. . Y. Liu. Learning to rank for information
retrieval. Foundations and Trends in Information
Retrieval, 3(3):225–331, 2009.

[20] T. Lu and C. Boutilier. Learning Mallows models with
pairwise preferences. In Proceedings of the 28th
International Conference on Machine Learning
(ICML-11), pages 145–152, 2011.

[21] T. Lu and C. Boutilier. Effective sampling and
learning for mallows models with pairwise-preference
data. The Journal of Machine Learning Research,
15(1):3783–3829, 2014.

[22] C. L. Mallows. Non-null ranking models. I.
Biometrika, pages 114–130, 1957.

[23] A. Mao, A. Procaccia, and Y. Chen. Better Human
Computation Through Principled Voting. In AAAI,
pages 1142–1148, 2013.

[24] N. Mattei and T. Walsh. PrefLib: A library of
Preference Data. In Algorithmic Decision Theory,
pages 259–270. Springer, 2013.

[25] M. Nicolas de Condorcet. Essai sur l’application de
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