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ABSTRACT
Pairwise voting rules are a generalization of the standard
voting rules where instead of a ranked list, each voter pro-
vides a set of pairwise comparisons between the candidates
and the voting rule picks a unique winner based on these
preferences. In this paper, we study the parameterized com-
plexity of manipulation of pairwise voting rules by a single
manipulator when the votes are unweighted. The manipu-
lator faces a graph orientation problem where the vertices
correspond to the candidates and the edges correspond to
the pairwise comparisons that the manipulator is allowed to
make. We study the e↵ect of various structural parameters
associated with this graph on the computational complexity
of the manipulation problem and provide a comprehensive
classification of the complexity landscape. We also intro-
duce a new parameter called diversity which is shown to
have useful algorithmic implications.

General Terms
Algorithms, Economics, Theory

Keywords
Social Choice Theory, Voting, Manipulation, Pairwise Pref-
erences, Parameterized Complexity

1. INTRODUCTION
One of the most well-studied questions in social choice

theory [1] concerns the problem of manipulation of voting
rules: given the votes of all the other voters, is it possible
for a strategic voter (namely the manipulator) to make a
preferred candidate win the election by casting a possibly
non-truthful vote? Unfortunately, the celebrated Gibbard-
Satterthwaite theorem [2, 3] states that strategic voting is
unavoidable for any voting rule that is non-dictatorial and
under which each of the three or more candidates has some
chance of winning.

Inspired by the work of Bartholdi, Tovey and Trick [4],
a large body of follow-up work has studied when and how
the computational di�culty of finding a manipulative vote
can be used as an e↵ective workaround to this impossibility

Appears at: 3rd Workshop on Exploring Beyond the Worst Case in
Computational Social Choice. Held as part of the 15th International Con-
ference on Autonomous Agents and Multiagent Systems. May 9th-10th,
2016. Singapore.

(see [5] for a survey on this topic). Much of this litera-
ture focuses on voting rules that aggregate preferences pro-
vided in the form of complete rankings over the entire set
of candidates. This assumption, however, breaks down for
large-scale settings like recommender systems that involve
extremely large candidate sets (e.g. movies, products, web-
pages etc.). In such settings, it is much more practical to
elicit partial preferences from the users in the form of top-k
preferences [6, 7, 8], partial orders [9] etc. Pairwise pref-
erences are the simplest form of partial preferences where
each voter is only required to provide a set of pairwise com-
parisons between the candidates, without either having to
compare all pairs of candidates (i.e. possibly incomplete) or
provide a transitive vote (i.e. possibly cyclic).

Recent work [10] has studied the problem of manipulation
of pairwise voting rules (i.e. voting rules that aggregate pair-
wise preferences) from both axiomatic and computational
perspectives. It has been shown that while the impossi-
bility of designing reasonable, non-manipulable voting rules
extends to the much larger domain of pairwise preferences,
computational complexity can once again provide a worst-
case barrier against manipulation. The goal of our study
is to develop a deeper understanding of the computational
complexity results in [10] using the toolkit of parameterized
complexity analysis [11, 12, 13, 14]. This involves a fine-
grained analysis of the running time in terms of the various
natural parameters associated with the problem, as opposed
to a coarse dependence on the size of the input as in the clas-
sical setting [15].

Specifically, we follow the framework of [10] where the ma-
nipulator is presented with an undirected graph (called the
action space), where each vertex corresponds to a candidate
and the edges correspond to the pairs of candidates that the
manipulator is allowed to compare. The task of the manip-
ulator is to orient some or all of these edges (via votes of
the form A�B, B�A or skip) in order to make a favorite
candidate win the election. We study how some of the nat-
ural structural parameters associated with this graph (like
vertex cover, feedback vertex set, maximum degree, treewidth
etc.) a↵ect the computational complexity of the manipula-
tion problem. Our results provide a comprehensive classifi-
cation of the complexity landscape for all combinations of
these parameters (see Table 1). An interesting feature of
our study is the introduction of a parameter called diversity
which, in conjunction with other structural parameters, ex-
plains a complete transition in the complexity of the manip-
ulation problem from computational tractability (i.e. FPT,
XP) to intractability (i.e. W-hardness, para-NP-hardness).



vc pw fvs tw ;
d FPT W[1]-hard and XP para-NP-

� FPT complete

; para-NP-complete

Table 1: Parameterized complexity results for pBorda-
Manipulation under the conditions specified by the corre-
sponding combination of parameters. The notation ; is used
to enable the consideration of singleton parameters. Merged
cells indicate combined parameters (refer Section 2 for rele-
vant definitions).

Contributions
Our contributions are as listed below. We refer the reader
to Table 1 for a summary of the results and to Section 2 for
relevant definitions. Figure 2 shows the relationship among
the various parameters considered in this study. All of our
results focus on a specific pairwise voting rule called pairwise
Borda (pBorda) which is defined later. The computational
problem corresponding to the manipulation of pBorda rule
is referred to as pBorda-Manipulation. Also note that all
parameters considered by us in this study are defined with
respect to the action space A of the manipulator.

1. We show that pBorda-Manipulation is e�ciently
solvable when A has bounded treewidth, subject to
bounded maximum degree parameter. This extends
the tractability result for A = tree graph shown in [10].

2. We also define a new parameter called diversity which,
in combination with the parameter vertex cover, pro-
vides tractability even on instances where maximum
degree can be unbounded (i.e. grow with the number
of candidates).

3. Finally, we show computational barriers to extending
the above tractability results to any other combination
of the parameters listed in Table 1.

Organization of this paper.
We provide the relevant definitions and notation in Sec-

tion 2 and describe our results and proof techniques in Sec-
tion 3. We survey the related literature in Section 4 and
conclude with some directions for future work in Section 5.

2. PRELIMINARIES
Our terminology and notation closely follow that of [10].

Let [n] = {1, 2, . . . , n} denote the set of candidates and
U = {u

1

, u

2

, . . . , um} denote the set of voters in an election.

Pairwise preferences and pairwise voting rules.
Let �u ✓ [n] ⇥ [n] denote the binary relation indicat-

ing the preferences of voter u, so that i�u j indicates that
voter u prefers candidate i over candidate j. For each pair
of candidates i, j and each voter u, we can have exactly one
of i�u j, j�u i or neither (i.e. voter u skips the compari-
son between i and j). We let R denote the set of all such
anti-symmetric and irreflexive binary relations on [n]; and
let ⇧ = (�u1 ,�u2 , · · · ,�um) 2 Rm denote the pairwise
preference profile of the voters.

Number of candidates (n)

Vertex Cover (vc)

Maximum degree (�)

Diversity (d)

Treewidth (tw)

FVS

Pathwidth (pw)

Figure 2: A Hasse diagram depicting the relationship be-
tween the parameters. Each arrow is directed from a smaller
parameter to a larger one. The implications for parame-
terized tractability (FPT, XP) propagate upwards along the
figure in the direction of the arrows while intractability (W-
hardness) propagates in the opposite direction.

A pairwise voting rule r maps a pairwise preference
profile ⇧ 2 [1

k=1

Rk to a unique candidate r(⇧) 2 [n].
Given a preference profile ⇧ 2 Rm and a pair of can-
didates i, j, let mij(⇧) denote the number of vot-
ers who strictly prefer candidate i over candidate j,
i.e. mij(⇧) =

Pm
k=1

1(i�uk j) where 1(.) is the indicator
function. A score-based pairwise voting rule is any pair-
wise voting rule r for which there exists a (natural) scoring
function s : [1

k=1

Rk ! Rn such that r(⇧) is the highest-
scoring candidate according to s(⇧) under some fixed tie-
breaking rule. That is, r(⇧) = T (argmaxi si(⇧)) for some
tie-breaking rule T : 2[n] \ {;} ! [n] satisfying T (S) 2 S for
all non-empty S ✓ [n]. Some examples of score-based pair-
wise voting rules are as follows:

(i) Pairwise Borda Rule (pBorda) [16]: The pBorda score
of candidate i under preference profile ⇧ is given by1:

s

pBorda

i (⇧) =
nX

j=1

mij(⇧)
mij(⇧) +mji(⇧)

.

(ii) Copeland↵ Rule [17]: The Copeland↵score (↵ 2 [0, 1])
of candidate i under preference profile ⇧ is given by:

s

Copeland

↵

i (⇧) =
nX

j=1

1

�
mij(⇧) > mji(⇧)

�

+ ↵ · 1�mij(⇧) = mji(⇧)
�
.

Manipulation of pairwise voting rules.
A pairwise voting rule r is said to be

manipulable if there exists a pair of pro-
files⇧ = (�u1 , . . . ,�um),⇧0 = (�u1 , . . . ,�um�1 ,�0

um) 2 Rm

di↵ering only in the preference of voter um such
that r(⇧0)�umr(⇧). That is, voter um (called the
manipulator) strictly prefers the new outcome over the old
one. The corresponding computational problem, referred to
as r-Manipulation, is defined as follows:

1where we adopt the convention 0/0 = 0.



(a) Before manipulation (b) After manipulation (c) After restricted manipulation

Figure 1: An illustration of the election instance in Example 2.1. (a) Each vertex of the multigraph represents a candidate
and each dashed edge represents the number of voters with that preference (e.g. two voters prefer A�C). (b) The pairwise
comparisons made by the manipulator are represented by solid edges and the pBorda score of the winning candidate is indicated
in boldface. (c) The restricted action space of the manipulator (A = {(A,C)}) is shaded in grey.

Definition 2.1. r-Manipulation

Instance: A tuple h⇧, i

⇤
,A, pref-typei where ⇧ 2 Rm�1

is the preference profile of the non-manipulators
(u

1

, u

2

, . . . , um�1

), i

⇤ 2 [n] is the distinguished candi-
date, A ✓ �

[n]

2

�
is the set of pairwise comparisons that

the manipulator is allowed to make and pref-type 2
{strict+acyclic, strict, acyclic, unrestricted} is the prefer-
ence constraint with respect to A.

Question: Does there exist a vote �um over A satisfying
pref-type such that r((⇧,�um)) = i

⇤?

Here A ✓ �
[n]

2

�
denotes the action space of the manip-

ulator i.e. the pairs of candidates that the manipulator
is allowed to vote over. Alternately, no pair of candi-
dates outside A can be compared by the manipulator. The
parameter pref-type indicates whether the preferences of
the manipulator over A are required to be strict (skip-
ping comparisons is not allowed), acyclic (directed cycles
of the form 1�u 2, 2�u 3, 3�u 1 etc. are not allowed),
strict+acylic (both strict and acylic) or unrestricted (no
such restriction). The computational complexity of r-

Manipulation was studied for various settings of the in-
puts A and pref-type in [10]. In this paper, however, we
only focus on problems where pref-type = unrestricted and
leave the study for other settings of pref-type as a direction
for future work. The following example from [10] illustrates
the role of the space A in the manipulation problem.

Example 2.1 (The role of action space A).

Consider the election setting shown in Figure 1a, where
the pBorda scores of the candidates A, B & C respectively
are 7/6, 3/2 & 1/3 and B is the pBorda winner. Suppose
we now add the manipulator u

4

to this election whose
favorite candidate is A. Observe that if the manipulator
casts the vote {(A�B), (A�C)} (see Figure 1b), the new
pBorda scores for A, B & C will be 17/12, 4/3 & 1/4
respectively and A becomes the winner. Thus, the answer
to pBorda-Manipulation for this election instance is YES
when A = {(A,B), (A,C)} or A = {(A,B), (A,C), (B,C)}.
If, however, the manipulator is allowed to compare only
the candidates A and C (that is, A = {(A,C)}), then
despite voting in favor of A, the manipulator cannot
make A win (Figure 1c). Therefore, the answer to
pBorda-Manipulation is NO when A = {(A,C)} .

Excess scores.
The excess score of a candidate i is the amount by which

the score of i exceeds the score of the distinguished candi-
date i

⇤ in a given election. For instance, in Figure 1c, the
excess pBorda scores of candidates B and C (with respect
to distinguished candidate A) are 1/4 and �1 respectively.
Hence, r-Manipulation for a score-based voting rule r can
be restated as finding a vote for the manipulator such that
the final excess scores of all candidates are zero or less.

Vote configuration.
We will often use a shorthand of the form 1:3 for a pair

of candidates (i, j) to denote that one voter votes i�j while
three other voters vote j�i. We will refer to 1:3 (or more
generally a : b for non-negative integers a, b) as the vote
configuration between i and j.

Parameterized Complexity.
A parameterized problem is denoted by a

pair (Q, k) ✓ ⌃⇤ ⇥ N. The first component Q is a classical
language and the second component k is a number (called
the parameter). Such a problem is called fixed–parameter
tractable (FPT) if there exists an algorithm that decides it

in time O(f(k)nO(1)) on instances of size n.
Just as NP-hardness is used as evidence that a problem

probably is not polynomial time solvable, there exists a hi-
erarchy of complexity classes above FPT, and showing that
a parameterized problem is hard for one of these classes is
considered evidence that the problem is unlikely to be fixed-
parameter tractable. The main classes in this hierarchy are

FPT ✓ W [1] ✓ W [2] ✓ · · · ✓ W [P ] ✓ XP

where a parameterized problem belongs to the class XP if
there exists an algorithm for it with running time bounded
by n

g(k) for some computable function g. We refer the reader
to [11, 12, 13, 14] for further details.

A parameterized problem is said to be para-NP-complete if
it is NP-complete even for constant values of the parameter.
A classic example of a para-NP-complete problem is Graph

Coloring parameterized by the number of colors [18] —
recall that it is NP-complete to determine if a graph can be
properly colored with three colors. Observe that a para-NP-
complete problem does not belong to XP unless P = NP .

For any pair of parameterized problems A and B, we say
that A is (uniformly many:1) FPT-reducible to B if there
exist functions f, g : N ! N, a constant ↵ 2 N and an
algorithm � which transforms an instance (x, k) of A into an



instance (x0
, g(k)) of B in time f(k) · |x|↵ so that (x, k) 2 A

if and only if (x0
, g(k)) 2 B. A convenient way of showing

that a problem is W[1]-hard is via an FPT reduction from a
known W[1]-hard problem. Hence, in the above definition,
if the problem A is known to be W[1]-hard in parameter k

and there exists an FPT reduction from A to B, then B is
W[1]-hard in the parameter g(k).

Parameters used in this study.
Let G = (V,E) denote a simple and undirected graph.
Maximum degree (�): The maximum degree of G is the

maximum number of edges incident on any vertex of G.
Vertex Cover (vc): A set of vertices V

0 ✓ V is a vertex
cover of G if for every edge (u, v) 2 E, either u 2 V

0 or
v 2 V

0 or both.
Feedback Vertex Set (fvs): A feedback vertex set of a graph

is a set of vertices whose removal makes the graph acyclic.
Tree decomposition: A tree decomposition of a graph

G is a tuple T = (T, {Bt}t2V (T )

) where T is a tree and
each node t of T is assigned a set of vertices Bt ✓ V

(called a bag) such that the following hold: (i) for each ver-
tex v 2 V , there exists a node t such that v 2 Bt (alter-
nately, [t2V (T )

Bt = V ); (ii) for each edge (u, v) 2 E, there
exists a node t such that u 2 Bt and v 2 Bt, and (iii) for
each vertex v 2 V , the set of nodes {t 2 V (T ) : v 2 Bt}
forms a connected subtree of T . Here V (T ) is the ver-
tex set of the tree T . The width of a tree decomposi-
tion T = (T, {Bt}t2V (T )

) equals maxt2V (T )

|Bt|� 1, i.e. size
of the largest bag minus one. The treewidth (tw) of a
graph G is the minimum possible width of a tree decom-
position of G. The notions of pathwidth (pw) and path de-
composition are defined analogously in terms of paths.
Diversity (d): Given a preference profile ⇧ of non-

manipulators’ votes, the diversity of the action space A is
the maximum number of distinct score transfers that a can-
didate can witness due to a single pairwise comparison made
by the manipulator. As an example, consider the election
instance shown in Figure 1a and consider the candidate A

in particular. Assuming that A = complete graph, the ma-
nipulator can make a pairwise comparison between any of
the three pairs (A,B), (B,C) or (C,A). If the manipulator
compares the pair (A,B), then the pBorda-score of candi-
date A can change by +1/6, 0 or �1/6 respectively, depend-
ing on whether the manipulator votes A�B, ‘skip’ or B�A.
This can be concisely represented as a score-transfer vec-
tor (+1/6, 0,�1/6). Similarly, the score transfer vector for
candidate A for a comparison involving (A,C) or (B,C)
is (+1/12, 0,�1/6) or (0, 0, 0) respectively. Since there are
three di↵erent kinds of such vectors, the diversity for candi-
date A is three. The diversity of an instance is the maximum
diversity witnessed by any candidate. Notice that for a given
election, diversity can be ⇥(n) under the pBorda rule while
the same for Copeland↵ is O(1) due to the limited types of
score exchanges permitted under the definition of Copeland
voting rule. For any pairwise voting rule where a pairwise
comparison by the manipulator can only a↵ect the scores of
the two candidates involved (examples include pBorda and
Copeland↵), diversity is at most the maximum degree �.

Elimination problem in sports.
The sports elimination problem [19] asks whether a

team i

⇤ can still win a sports competition, given the cur-

rent scores of the teams and the set of games to be played
between them. Sports competitions are often scored accord-
ing to a scoring system, which specifies how many points
are awarded to the home and the away teams depending
on the outcome of a game between them. For example,
the well-known European football scoring system, denoted
by S = [(3, 0), (1, 1), (0, 3)], awards 3 points for win, 1 point
for draw and 0 for loss, regardless of the home-away distinc-
tion. Similarly, the system S = [(3, 0), (1, 2), (0, 3)] provides
an extra point to an away team under a draw outcome. The
computational problem corresponding to the above question,
called S-Elimination, is defined as follows [20]:

Definition 2.2. S-Elimination

Instance: A tuple hs, i⇤,Gi where s = (s
1

, s

2

, . . . , sN )T is
the vector of current scores of the N teams, i⇤ 2 [N ] is a
distinguished team and G ✓ �

[N ]

2

�
is the set of remaining

games between the teams.

Question: Does there exist an assignment of outcomes for
the games in G such that i⇤ ends up with the (joint) highest
total score among all teams under the scoring system S?

Partition.

Definition 2.3. Partition

Instance: A multiset A = {a
1

, a

2

, . . . , aN} of N positive
integers.

Question: Does there exist a partition of A into the sets A
1

& A

2

such that
P

ai2A1
ai =

P
aj2A2

aj = 1

2

P
ak2A ak?

Partition is a well-known NP-complete problem [18]. We
assume without loss of generality that a

1

 a

2

 · · ·  aN .

Capacitated Dominating Set.

Definition 2.4. Capacitated Dominating Set

Instance: A triple hG, c, ki where G = (V,E) is a
graph, c : V ! N is a capacity function for the vertices
of G and k is a positive integer.

Question: Does there exist a set of vertices V

0 ✓ V of size
at most k in G such that each vertex v 2 V \V 0 is adjacent
to some vertex v

0 2 V

0 and no vertex v

0 2 V

0 is adjacent to
more than c(v0) vertices in V

0 \ V ?

Capacitated Dominating Set was shown to be W[1]-hard
when simultaneously parameterized by the treewidth and so-
lution size k [21]. In fact, the problem remains W[1]-hard
when simultaneously parameterized by the pathwidth and
the size of the feedback vertex set of the graph G, even on
instances with only constantly many distinct capacities2.

2This can be shown by carrying out the reduction in [21]
while starting from Multicolored Clique on regu-
lar graphs and observing that the parameters pathwidth,
treewidth and feedback vertex set of the reduced Capaci-

tated Dominating Set instance are all O(k4) in size.



3. OUR RESULTS AND TECHNIQUES
Our classification result for the parameterized complexity

of pBorda-Manipulation for any combination of the con-
sidered parameters is summarized by Theorem 3.1 and Ta-
ble 1. We assume throughout that pref-type=unrestricted.

In the parameterized studies of computational problems
that arise in the context of voting, a commonly used param-
eter is the number of candidates (n) [22, 23, 24, 25, 26, 27].
We observe that for any pairwise voting rule that is easy to
evaluate, the problem of manipulation by a single manipu-
lator is trivially FPT for this choice of parameter, because
even a brute-force search over all possible votes of the manip-

ulator will yield the desired running time (i.e. O(3n
2
)). The

other natural choice of parameter is the number of voters.
However, we know from [10] that pBorda-Manipulation is
NP-complete even with twelve non-manipulators. Given the
extreme behaviors on the two obvious choices of parameters,
we turn to the action space of the manipulator A and try
to understand how the problem complexity is influenced by
parameters associated with the structure of A.

We start by recalling the result in [10] which states that
that pBorda-Manipulation is e�ciently solvable when A
is a tree/forest/graph with maximum degree two. Given
this result, we follow the “distance from triviality” approach
in parameterized analysis [28] and consider parameters that
measure how far A is from the class of tractable instances
i.e. degree of closeness to being a tree or a forest. This mo-
tivates the study of parameters like treewidth (tw), feedback
vertex set (fvs) and maximum degree (�); and upper/lower
bounds on these parameters like pathwidth (pw) and vertex
cover (vc) (refer Section 2 for formal definitions). Interest-
ingly, a similar set of parameters was recently used in the
parameterized complexity analysis of the closely-related S-

Elimination problem [29], and studying their influence on
the complexity of pBorda-Manipulation allows us to com-
pare the complexity landscapes of the two problems, as we
will see.

Our first set of results shows that the manipulation prob-
lem is, somewhat surprisingly, para-NP-complete for (i) the
maximum degree parameter, and (ii) any combination of the
parameters in {vc, fvs, pw, tw}. This already establishes a
contrast with S-Elimination which was shown to be in XP

when parameterized by the treewidth of the graph formed
by the set of remaining games [29].
On the other hand, pBorda-Manipulation is FPT when

simultaneously parameterized by maximum degree and any
combination of the other parameters. We ask if there is a
natural parameter that is, in general, smaller thanmaximum
degree, but that can still provide tractability when combined
with some of the other structural parameters. We discover
an answer in the form of a novel parameter called diversity
(d), which is a measure of how many di↵erent types of score
exchanges the manipulator encounters for any candidate.
Unfortunately, it turns out that pBorda-Manipulation is
NP-complete on graphs with constant diversity ; in fact, it
remains NP-complete even when the sum of diversity and
maximum degree is bounded by a constant [10]. On the
positive side, we show that diversity, when combined with
vertex cover, leads us to an FPT algorithm, while we ob-
tain XP algorithms by combining it with any of the other
parameters in {fvs, pw, tw}. We do not expect to improve
this XP result, as the problem remains W[1]-hard in those
cases.

We now state our main result (Theorem 3.1) that sum-
marizes the findings described above (see also Table 1).

Theorem 3.1. Let P = {vc, pw, fvs, tw, �, d} denote
the set of parameters defined over the action space A of
an instance of pBorda-Manipulation. Let X denote the
set {vc, pw, fvs, tw} and Y denote the set {d,�}. Then

1. For any Q ✓ X or Q ✓ Y, pBorda-Manipulation

is NP-complete even when the sum of all parameters
in Q is bounded by a constant.

2. For all Q ✓ P, pBorda-Manipulation parameterized
by Q is in XP if Q contains d along with any element
of X . Further, the problem is FPT if Q contains �
along with any element of X , or if it contains both d

and vc.

3. In the remaining case when Q ✓ P does not contain ei-
ther � or vc, pBorda-Manipulation is W[1]-hard pa-
rameterized by Q, even on instances where d is bounded
by a constant.

We briefly summarize these results and their implications.

(i) We show that pBorda-Manipulation remains NP-
complete even for instances where A has a vertex cover
of size two (Theorem 3.2). Since a bound on the size of
the vertex cover implies a bound on the size of the feed-
back vertex set, pathwidth and treewidth, we have NP-
completeness of pBorda-Manipulation even when pa-
rameterized by all parameters in X combined. To-
gether with the result from [10] showing NP-hardness
of pBorda-Manipulation on instances of maximum
degree � = 3 (and therefore diversity d  3), this im-
plies statement 1 of Theorem 3.1.

(ii) We use dynamic programming over tree decomposi-
tions to show that pBorda-Manipulation is FPT
when parameterized by maximum degree and treewidth
(Theorem 3.4). Since all other parameters in X are
larger than treewidth, this gives an FPT result when �
is combined with any subset of parameters in X . Sim-
ilarly, we use Lenstra’s result [30] on Integer Linear

Programming being FPT in the number of variables
to show that pBorda-Manipulation is FPT when si-
multaneously parameterized by the vertex cover and
diversity of A (Theorem 3.5). These two results to-
gether imply statement 2 of Theorem 3.1.

(iii) Finally, we show that pBorda-Manipulation is W[1]-
hard when simultaneously parameterized by the feed-
back vertex set and pathwidth of A via an FPT-
reduction from Capacitated Dominating Set [21].
This proves statement 3 part of Theorem 3.1.

We now provide formal statements and proofs for the
results stated above. Our first result shows that pBorda-
Manipulation is para-NP-complete in vertex cover.

Theorem 3.2. pBorda-Manipulation is NP-complete
when A is a general graph with a vertex cover of size two
and pref-type = unrestricted.

Proof. The problem is clearly in NP. We show NP-
hardness by reduction from Partition.

Construction of the reduced instance: Given an in-
stance A = {a

1

, a

2

, . . . , aN} of Partition, we construct



an instance h⇧, i

⇤
,A, pref-typei of pBorda-Manipulation

as follows: the set of candidates consists of (i) the selec-
tor candidates X and Y , (ii) a candidate i for each pos-
itive integer ai 2 A (called the integer candidates), (iii)
the distinguished candidate i

⇤ and (iv) the dummy candi-
dates D

1

, D

2

, . . . , D

4N (hence n = 5N + 3 candidates over-
all). The action space A is the complete bipartite graph
between the selectors and the integer candidates. That
is, A = {[i2[N ]

{(X, i) [ (Y, i)}}. The set of voters consists
of 2Q non-manipulators (where Q = (2aN + 1) · (2aN + 2))
and one manipulator. The votes of the non-manipulators
between the selectors and the integer candidates are set
up in order to ensure that the score transfers resulting
from the manipulator’s vote are ai/Q (if the manipulator
votes X�i or Y�i) and (2aN +1�ai)/Q (if the manipulator
votes i�X or i�Y ). Specifically, for each i 2 [N ], both the
candidate pairs (i,X) and (i, Y ) are in ai : (2aN + 1� ai)
configuration. The votes involving dummy candidates are
set up as follows: for each i 2 [N ], the pair (i⇤, Di) is
in (2aN +1�ai) : ai configuration while the pair (i⇤, DN+i)
is in ai : (2Q � ai) configuration. For each i 2 [N ], the
pair (i,D

2N+i) is in (2aN + 1 � 3ai) : 3ai configuration
while the pair (i,D

3N+i) is in 2ai : (2Q � 2ai) configura-
tion. Finally, for each i 2 [N ] and each k 2 [N ] \ i, the
pair (i,D

2N+k) is in (2aN +1� ak) : ak configuration while
the pair (i,D

3N+k) is in ak : (2Q� ak) configuration.
It is easy to check that the excess score of each integer

candidate i after this construction is ai/2Q, while that of
each selector is �1

2Q

P
ak2A ak. Also note that the selector

vertices constitute a vertex cover of A of size two.
Equivalence of solutions: ()) Suppose there exists a par-

tition of A into the sets A

1

and A

2

. A valid manipula-
tive vote can be constructed from this partition as follows:
for each i 2 [N ], the manipulator votes X�i if ai 2 A

1

or Y�i if ai 2 A

2

and skips all other comparisons. The
final excess score of each integer candidate i is negative,
since ai

2Q
� ai

Q
< 0. The final excess score for each selector

equals 0 due to the partition property, making i

⇤ the winner.
(() Suppose there exists a valid manipulative vote that

makes i

⇤ win. Then, without loss of generality, each inte-
ger candidate i must lose at least one of its two pairwise
comparisons in A in order to get rid of its positive excess
score (Observation 1). Similarly, no integer candidate i can
win either of its pairwise comparisons against any of the se-
lectors or otherwise it accumulates an excess that it cannot
o✏oad any further (Observation 2). Observation 1 implies
that the combined pBorda score that gets transferred from
the integer candidates to the selectors is at least

P
ak2A

ak
Q
.

Observation 2 implies that no pBorda score gets transferred
in the reverse direction. Since the selectors can together
handle an influx of at most

P
ak2A

ak
Q
, each integer candi-

date i must lose to exactly one of the selectors while the
other comparison is skipped. A partition can now be natu-
rally inferred from such a vote.

Remark 3.1. An implication of Theorem 3.2 is a sepa-
ration of the problems of pBorda-Manipulation and S-

Elimination in terms of their computational complexity.
As mentioned earlier, S-Elimination was shown to be
in XP when parameterized by the treewidth of the graph
formed by the set of remaining games [29] while pBorda-
Manipulation is para-NP-complete in the same parameter.
Hence, pBorda-Manipulation is necessarily harder than S-

Elimination unless P = NP .

Our next result establishes the W[1]-hardness of pBorda-
Manipulation in terms of the size of the feedback vertex
set and the pathwidth of A, even on instances where the
diversity of A is bounded by a constant.

Theorem 3.3. pBorda-Manipulation is W[1]-hard
when simultaneously parameterized by feedback vertex set
and pathwidth of A when A = general graph with constant
diversity and pref-type = unrestricted.

Proof. We show an FPT reduction from Capacitated

Dominating Set. Recall from Section 2 that Capacitated

Dominating Set is W[1]-hard when simultaneously param-
eterized by the feedback vertex set and pathwidth of the in-
put graph even on instances with only a constant number of
distinct capacities.

Construction of the reduced instance: Given an in-
stance hG = (V,E), c, ki of Capacitated Dominating Set,
we construct an instance h⇧, i

⇤
,A, pref-typei of pBorda-

Manipulation as follows: the set of candidates consists of
(i) the source X and the sink Y , (ii) a candidate vi for each
vertex in G (the vertex candidates), (iii) a candidate ei for
each edge in G (the edge candidates), (iv) the distinguished
candidate i

⇤ and (v) the dummy candidates D
1

, D

2

, . . . , D`

where ` = 7|V |+ 2|E|+�+ 2� 2k and � is the maximum
degree of graph G. Hence, n = 8|V | + 3|E| + � � 2k + 5.
The action space A is the union of all unordered pairs of
candidates connected by dashed edges in Figure 3. That is,

A =
�{[i2[|V |](X, vi)} S {[j2[|E|](ej , Y )} S

{[i2[|V |],j2[|E|](vi, ej) where vi is adjacent to ej in G} .

Figure 3: This figure shows the reduced pBorda-
Manipulation instance (excluding the dummy candidates
and i

⇤) constructed from the given Capacitated Dominat-

ing Set instance. The action space of the manipulator A
is shown on the left via dashed lines along with the excess
pBorda scores. The vertex candidates are indicated by cir-
cles in the middle layer and the edge candidates are shown
as triangles. The right side shows the configuration of votes
of the non-manipulators and the resulting scores transfers.

The set of voters consists of Z non-manipulators
(where Z = (B + �) · (B + �+ 1), B = |V | + |E| +



P
vi2V (G)

c(vi) and � = maxi2|V | c(vi)) and one manipula-
tor. The votes corresponding to action space A are set up
as follows: for each i 2 [|V |], the candidate pair (X, vi) is
in (B + c(vi)) : (�� c(vi)) configuration. For each i 2 [|V |]
and each j 2 [|E|] such that vi is adjacent to ej in G, the
candidate pair (vi, ej) is in (B + � � 1) : 1 configuration.
Finally, for each j 2 [|E|], the candidate pair (ej , Y ) is
in 2 : (B + � � 2) configuration. We omit the description
of the votes involving dummy candidates due to space limi-
tations and remark that they are only used to calibrate the
excess scores of candidates as shown in Figure 3. This fin-
ishes the construction of the election instance.

Note that the reduction is e�cient since it
uses O((|V |+ |E|)2) voters and O(|V | + |E|) candi-
dates. Also note that the reduction is parameter preserving,
in that if the pathwidth and size of the optimal feedback
vertex set of G are w and t, then the same parameters
for the action space A are O(w2) and (t + 2) respectively.
Furthermore, the diversity of the reduced election instance
is a constant since the original Capacitated Dominating

Set instance only has O(1) distinct capacity values.
Equivalence of solutions: ()) Suppose S ✓ V (G) is a

valid capacitated dominating set. Then a valid manipula-
tive vote can be constructed as follows: first, the manipula-
tor triggers score transfers from source X to vertex candi-
dates in V (G) \ S with a vote vi�X for all vi 2 V (G) \ S.
This brings the excess score of X below zero and results
in an excess of B/Z for each vi 2 V (G) \ S. Next, for
each vi 2 V (G) \S, the manipulator votes ej�vi for exactly
one edge candidate ej that connects vi to a candidate v0i 2 S

that vi is assigned to. This results in a negative excess score
for all vertex candidates in V (G) \ S while each edge can-
didate ej chosen above by the manipulator now acquires an
excess score of (B + � � 1)/Z. Finally, for each such edge
candidate ej , the manipulator votes Y�ej and v

0
i�ej . It

is easy to check that after this step no candidate in A has
positive excess score, making i

⇤ the pBorda winner.
(() Suppose there exists a valid manipulative vote that

makes i⇤ win. Then, without loss of generality, X must lose
against at least (|V | � k) vertex candidates in order to of-
fload its excess. Call this set S

0. Hence, |S0| � |V | � k

and each candidate in S

0 acquires an excess of B/Z as a
result. Next, observe that any candidate in S

0 can only of-
fload its excess score to the edge candidates adjacent to it
in G. As a result, each edge candidate a↵ected in this man-
ner (there must be at least (|V | � k) such edge candidates
overall) acquires an excess of (B + � � 1)/Z, that it must
o✏oad to the sink Y and the other vertex candidate adja-
cent to it. Hence, the sink Y su↵ers a total inflow of at
least (|V |� k) · (B + �� 2)/Z from the a↵ected edge can-
didates. By design, this is also the maximum inflow that the
sink can handle without gaining positive excess. Therefore,
the set S0 must consist of exactly (|V |�k) vertex candidates
such that each candidate in S

0 is connected to a candidate
in V (G) \ S

0 via an edge candidate. Besides, no candidate
in V (G) \ S0 can be adjacent to more than c(vi) candidates
in S

0, or else there will be no means for this candidate to
o✏oad its own excess score. Therefore, the set V (G) \ S

0

constitutes a capacitated dominating set of G.

Remark 3.2. Except for scoring systems of the form
S = {(i, t� i) : 0  i  t} for some t 2 N, S-Elimination

was shown to be W[1]-hard in the parameters feedback
vertex set and pathwidth via separate (although simi-

lar) proofs in [29]. By instantiating S-Elimination

for S = [(3, 0), (1, 2), (0, 3)] and using the observation in [10]
that S-Elimination becomes a special case of pBorda-
Manipulation under such instantiation, one can alter-
nately derive W[1]-hardness of pBorda-Manipulation in
terms of the two parameters individually. By contrast, The-
orem 3.3 provides a single proof for showing W[1]-hardness
in the two parameters simultaneously.

Our first algorithmic result shows that pBorda-
Manipulation is FPT when simultaneously parameterized
by the treewidth and maximum degree of A. We show this by
the standard dynamic programming procedure over a given
tree decomposition [14] and omit the detailed proof due to
space limitations.

Theorem 3.4. pBorda-Manipulation is solvable in

time O�
�O(dw2

)(n logm)O(1)

�
, where �, w and d denote the

maximum degree, treewidth and diversity of A respectively.

Note that since d  � for pBorda rule, the running time
above is FPT in maximum degree � and the treewidth of A.
Further, since �  n, the running time is also XP with
respect to the diversity d and treewidth w of A. We restate
these observations as the following corollary.

Corollary 3.1. pBorda-Manipulation is FPT when
parameterized by the maximum degree and the treewidth
of A; and in XP when parameterized by the diversity and
the treewidth of A.

Our next algorithmic result pertains to graphs of bounded
vertex cover number and bounded diversity.

Theorem 3.5. pBorda-Manipulation is solvable in
time O�

f(k, d)(n logm)O(1)

�
, where k and d denote the size

of a vertex cover and diversity of A respectively and f is a
computable function.

Proof. The proof proceeds by partitioning the vertices
of the independent set of A into equivalence classes based
on their interactions with the vertex cover, and exploiting a
size bound on the number of such equivalence classes in the
subsequent ILP formulation.

Specifically, let S ✓ V (A) be a vertex cover of A of
size k and let I = V (A) \ S be the corresponding in-
dependent set. For any T ✓ S, let IT ✓ I denote
the set of all vertices in I whose neighborhood within A
is exactly the set T . Next, given T = {v

1

, . . . , vt} ✓ S

and a vector ET = h(↵
1

,�

1

), . . . , (↵t,�t)i consisting of pairs
of non-negative integers (↵i,�i), define the equivalence
class IT,ET ✓ IT such that for any pair of vertices vi 2 T

and u 2 IT,ET , the candidate pair (vi, u) is in ↵i : �i config-
uration with respect to the votes of non-manipulators. Note
that since the diversity d of the instance is bounded, any
vertex of the independent set must belong to exactly one of
at most 2k · dk equivalence classes.

Call a vertex u 2 IT,ET safe with respect to a vec-
tor z 2 {�1, 0, 1}|T | if the excess score of u is zero or less for
the following vote of the manipulator: for each vi 2 T , u�vi

if z(i) = +1; ‘skip’ the comparison (u, vi) if z(i) = 0
and vi�u if z(i) = �1. Note that fixing the manipulator’s
vote on all pairwise comparisons in A involving u fixes the
pBorda score of u. Similarly, define the safety-set of a ver-
tex u 2 IT,ET as the set of all vectors z 2 {�1, 0, 1}|T | with



respect to which u is safe. We say that a vertex u 2 IT,ET

sees a vote z 2 {�1, 0, 1}|T | if z is the restriction of the ma-
nipulator’s vote to the pairwise comparisons in A involv-
ing u.

Given an equivalence class IT,ET and the safety-set for
each u 2 IT,ET , define a safe-subclass as the set of all vertices
in IT,ET with identical safety-sets. Denote the number of
safe-subclasses in IT,ET by NT,ET . Thus, NT,ET  3k.

We now claim that any valid solution to pBorda-
Manipulation can be transformed into another (possibly
di↵erent) solution where all vertices inside a safe-subclass
see the same vote vector. Indeed, fix a safe-subclass and
let z

0 be the restriction of a valid vote � as seen by the
vertex with the highest excess score in that safe-subclass.
An alternate vote can now be constructed as follows: in the
original vote �, replace the vote vector currently seen by
each vertex inside the given safe-subclass by z

0, while keep-
ing the rest of the vote unchanged. It is easy to check that
the excess score constraints for all vertices continue to re-
main satisfied in the new vote. Therefore, without loss of
generality, all vertices inside a safe-subclass see the same
vote vector in a valid vote of the manipulator.

Our algorithm takes as input an instance of pBorda-
Manipulation, namely h⇧, i

⇤
,Ai and returns a YES/NO

output indicating the existence of a valid manipulative vote
(along with a valid vote, if one exists). The algorithm starts
by guessing the manipulator’s vote within the vertex cover
(call this guess �S). There are at most

�
k
2

�
such pairs, hence

the total number of choices is at most 3O(k2
). For each such

guess, we obtain a new instance of pBorda-Manipulation,
namely h⇧0

, i

⇤
,A0i where ⇧0 is a voting profile representing

the original votes of the non-manipulators combined with
the manipulator’s vote �S over the vertex cover and A0 rep-
resents the restriction of the graph A to the bipartite sub-
graph S ⇥ I. The algorithm now uses ILP to solve this new
problem for each equivalence class in parallel, and checks if
the combined vote constitutes a valid solution.

Formulating the ILP : We now describe the variables and
constraints for the ILP.

Variables: For each subset T ✓ S, each score vector
ET = h(↵

1

,�

1

), . . . , (↵t,�t)i, each 1  p  3|T | and each
1  q  NT,ET , define a binary variable ZT,ET ,p,q 2 {0, 1}.
Here ZT,ET ,p,q = 1 (respectively 0) indicates that given
T , ET and the induced equivalence class IT,ET , the safe-
subclass indexed by q sees (respectively does not see)
the vote vector indexed by p. Thus, there are at most
2k · dk · 32k variables overall. In other words, the number
of variables depends only on the parameters d and k.
Constraints: Our ILP has three types of constraints:

(i) Sanity constraints:

(a) ZT,ET ,p,q 2 {0, 1} for all T, ET , p and q.

(b) for every T , ET and q,
P

p ZT,ET ,p,q = 1 (i.e. each
safe-subclass sees exactly one vote vector).

(ii) Excess score constraints for the vertex cover : for each
vertex vi 2 S

P
T2Tv

P
ET

P
q

P
p ZT,ET ,p,q · 1(pi = 0) · ↵i

↵i+�i
· |q|

+ZT,ET ,p,q · 1(pi = �1) · ↵i+1

↵i+�i+1

· |q|
+ZT,ET ,p,q · 1(pi = +1) · ↵i

↵i+�i+1

· |q|  s

⇤

where Tv = {T ✓ S | v 2 T} and |q| represents the
cardinality of the safe-subclass q. The latter can be
e�ciently precomputed.

(iii) Excess score constraints for the independent set : for
all T , ET , p and q

ZT,ET ,p,q  Z

safe

T,ET ,p,q

where Z

safe

T,ET ,p,q 2 {0, 1} is a (precomputed) binary
indicator specifying whether, given T , ET and the in-
duced equivalence class IT,ET , the vector p belongs to
the safety-set of (any vertex in) the safe-subclass q.

The theorem now follows since ILP feasibility is FPT when
parameterized by the number of variables [30], which, as
remarked earlier, is a function of d and k alone.

Remark 3.3. The proof techniques used in our algorith-
mic results (Theorems 3.4 and 3.5) can be readily applied to
S-Elimination to recover the corresponding results in [29].

4. RELATED WORK
Parameterized complexity analysis has proven extremely

useful in scrutinizing the computational behavior of a variety
of problems in computational social choice, namely winner-
determination [22, 31, 24, 32], manipulation [23, 33, 34, 26,
27, 35], bribery [36, 37, 38], possible and necessary winner
problems [39, 40, 41], etc. We refer the reader to [42, 43] for
detailed surveys on this topic.

Among the studies on the parameterized complexity of
manipulation of standard voting rules, our work shares
the spirit of [34, 35] where parameterization of the pref-
erence domain (in their case, in terms of closeness to single-
peakedness) was used to show special-case tractability re-
sults. Specifically, [34] showed that unweighted Borda ma-
nipulation with two manipulators is e�ciently solvable over
the domain of single-peaked preferences, although the prob-
lem is known to be NP-complete over the unrestricted do-
main [44, 33].3 This result was later generalized in [35] where
the manipulation problems for Borda and Copeland↵ rules
by two manipulators were shown to be FPT in the param-
eter single-peaked width (which measures the distance of a
preference profile from single-peakedness).

5. CONCLUDING REMARKS
We studied the problem of manipulation in the model of

pairwise preferences and gave a complete classification of
the parameterized complexity of manipulating the pairwise
Borda rule in terms of various natural parameters relating to
the action space. This involved the introduction of diversity
as a parameter, which we demonstrated to be useful from
an algorithmic perspective.

Our work opens up two very natural directions for fu-
ture work. First, the parameterized complexity of pBorda-
Manipulation for other settings of the parameter pref-
type remains to be analyzed. Second, it would be interesting
to compare the parameterized behavior of pBorda rule with
that of other pairwise voting rules like Copeland↵ [17] (the
classical complexity landscape for this family of rules was
described in [10]), PageRank [45], HodgeRank [46], Ranked
Pairs, Schulze’s rule [47] etc.
3Recall that the problem of unweighted Borda manipulation
by a single manipulator was shown to be e�ciently solvable
over the domain of rankings in [4].
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ABSTRACT
Voting systems in which voters are partitioned to districts
encourage accountability by providing voters an easily iden-
tifiable district representative, but can result in a selection
of representatives not representative of the electorate’s pref-
erences. In some cases, a party may have a majority of the
popular vote, but lose the elections due to districting e↵ects.

We define the Misrepresentation Ratio which quantifies
the deviation from proportional representation in a district-
based election, and provide bounds for this ratio under var-
ious voting rules. We also examine probabilistic models for
election outcomes, and provide an algorithm for approxi-
mating the expected Misrepresentation Ratio under a given
probabilistic election model. Finally, we provide simulation
results for several such probabilistic election models, show-
ing the e↵ects of the number of voters and candidates on the
misrepresentation ratio.

1. INTRODUCTION
A voting system is a method by which voters choose be-

tween several alternatives and their opinions are aggregated,
ultimately choosing a winner (or winners). Democratic coun-
tries, in principle, aim to have a representative outcome, by
having a legislature roughly representative of the public’s
beliefs, and in some countries, by having the chief executive
elected directly by the public.

However, many democracies use a district based system
for the selection of their legislature (most prominently, the
Westminster system and the US system). In district based
schemes, voters are divided into geographically based dis-
tricts1, and each one selects a representative to the legis-
lature. The selection mechanisms di↵er: Westminster and
US systems use plurality, France uses plurality with runo↵,
while Australia uses STV. Typically, candidates in each con-
stituency are members of political parties, and some systems
have the majority party form the executive (others, such as

1While we use the term“district”, other terms include “elec-
toral district” (US), “riding” (Canada), and “constituency”
(UK).
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the US, have a similar process for selecting the chief execu-
tive).

Single-member district elections provide voters a single
and easily identifiable district representative, encouraging
service and accountability. However, the proportion of seats
in the legislature belonging to a party may be very di↵erent
from the proportion of voters supporting that party in the
overall population; this is known as the “referendum para-
dox” [33]. The disparity between the popular vote and the
district vote has been a source of contention in US elections;
by redistricting constituencies (“gerrymandering”), political
parties have manipulated the elections [25, 10]; indeed, the
US Voter Rights Act of 1965 includes several provisions that
require change in congressional districts in several states to
be approved by federal authorities [36].

Moreover, such a discrepancy is caused not only by gerry-
mandering, but is built into district-based mechanisms. In
the US presidential election of 1876, the losing candidate,
Samuel Tilden, got 6% more votes than the winner, Ruther-
ford Hayes, an occurrence that happened twice since. The
electoral college, through which the president is elected, dis-
plays the problem even more acutely; in the US 1992 presi-
dential election a candidate that garnered 18.9% of the vote,
Ross Perot, was not represented at all. In the UK system,
in 1951 the Conservative party lost the popular vote to the
Labour party while still winning a strict parliamentary ma-
jority; in general, while no party has received a majority
of the popular vote in a British election since 1931, all but
two elections resulted in a parliamentary majority for one
of the parties. Similar scenarios have unfolded in Canada,
Australia and elsewhere.

Such problems may also arise in any multi-level decision
making process. So, if an organization or a sensor analysis
system (e.g., an automated car), attempts to decide on its
next step based on inputs from sub-systems employing their
own decision making processes (e.g., each sensor family is a
district, and sensors are “voting” between themselves), they
may also encounter such a problem, as a small amount of
signals may cause the system to reach a wrong outcome.

Consider the following example. Two political parties, A
andB compete in seven districts of equal size, D1, D2, . . . , D7.
Both parties run a candidate in every district, and the plu-
rality voting rule is used to determine the winner. Now,
suppose that in districts D1, . . . , D4, 60% of the vote goes
to the representative of party A; on the other hand, in dis-
tricts D5, D6 and D7 the representatives of party B take
100% of the vote. The final vote tally shows party A wins



the election, even though party B has nearly twice as many
voters!

As the example above shows, a minority (those in favor of
party A) may rule over the majority (those in favor of party
B). We refer to the outcome in this case as a misrepre-
sentation of the voters’ preferences. District based electoral
systems tend to be more “stable”: they tend to result in a
smaller number of candidates, and thus less fragmentation
of the parliamentary body. However, misrepresentation is
an inherent byproduct of electoral stability; indeed, stabil-
ity comes at the heavy price of potentially overriding the
preferences of most voters.

One way to quantify the degree to which a system skews
the true desires of the voters — as captured by the total
support for each party — is to examine the ratio between
the number of those who voted for the most popular party in
general, and the number of voters who voted for the winner.
When more people voted for the losing party than for the
winning party this ratio is larger than one. The higher this
ratio is, the more pronounced the misrepresentation e↵ect.

Our Contribution.
We examine the issue of misrepresentation due to district-

based systems under several prominent voting rules. We
first provide a metric for quantifying the misrepresentation
e↵ect, both for elections with two parties and for elections
with more than two parties, which we call the Misrepresen-
tation Ratio. We provide bounds on the Misrepresentation
Ratio for several voting rules, depending on the numbers of
voters, candidates and districts. Finally, we provide some
simulation results regarding the misrepresentation ratio in
certain scenarios, to examine its values under various set-
tings.

2. RELATED WORK
Voting district representability has been the topic of much

public debate and research for two centuries, since the ad-
vent of redistricting in United States (“gerrymandering”) 2

and in United Kingdom, redistricting due to an attempt
to follow population changes in successive reform bills. Most
of the research on these issues focused on historical [8, 7],
sociological [29] and political science [10] issues. Particularly
since the Voting Rights Act of 1965, much legal research
has also dealt with district based system, though usually
focusing on particular countries (mainly – though not solely
– the US) [36, 25].

Political science research on such misrepresentation has
mostly focused on trying to assess when it might occur,
studying the history of elections or using statistic assump-
tions [38] and analysis on election data [16, 31, 32, 27, 28,
22]. This analysis, however, does not try to asses how bad
the misrepresentation can get, and mostly focuses on plural-
ity and its variants. A somewhat similar line of research tries
to assess voter’s misrepresentation as distance of parliamen-
tary seat allocation compared to pure representational set-
tings [19, 17, 20, 15], applying concepts such as the Banzhaf

2Our analysis focused on how bad misrepresentation might
be, rather that the issue of how restructuring districts may
be used as a purposeful manipulation, designed to give an
unfair advantage to a specific candidate, more in line with
other forms of manipulation and control in elections [11, 13,
1, 3].

index and voting power. However, we deal with the dif-
ferent issue of quantifying the misrepresentation degree by
examining the degree of support of the losing candidate.

The computational social choice community focused on
manipulation by voters [40, 41, 35], and less on more insti-
tutional motivated manipulation. Some work has been done
on control problems, in which a central authority may signif-
icantly influence results (e.g. [23] and the survey by [12]), in-
cluding preliminary work on dividing voters into groups [9].
Optimal gerrymandering strategies have been studied in [34,
18]; however, these have mostly focused on 2 party scenarios,
as in the US.

In establishing our bounds, we encounter the problem of
finding the minimal score a candidate can win with, given a
scoring rule; [39] studies a similar problem, but their results
do not directly apply to our setting. Our problem is a special
case of the bin packing problem with a constant number of
types; this problem has been widely believed to be NP-hard,
but recent advances [37, 26] have eventually established that
it is in P [21].

3. PRELIMINARIES
We have a set of voters, V , and each voter i 2 V has

a preference order (without ties) over the candidate set C,
denoted �

i

. For every c, c0 2 C, we say that i prefers c to
c0 if c0 �

i

c. We denote the set of linear preferences over C
as L(C).

A voting rule is a function f : L(C)n ! C, whose input is
a finite list of linear preferences over C (a profile) of size n
(most voting rules are well defined for any n > 0) and whose
output is a candidate c 2 C. Voting rules are often assumed
to output a set of candidates, but since in our setting we are
only interested in the winners of the election, the output of
f is a single candidate (f may incorporate some fixed tie-
breaking rule). Since the set of voters and their preferences
is constant throughout the paper, we overload notation and
define f over subsets of V : given a set Q ✓ V , we let f(Q)
be the output of f over the preferences of the voters in Q.

A voting rule is neutral if the outcome is invariant under
candidate name changes. More formally, a voting rule f is
neutral if for any two candidates c and c0, if every voter
i 2 V now ranks c in the position of c0 and vice versa, the
outcome of f is unchanged if the winner was neither c or c0,
is c0 if the winner was c, and is c if the winner was c0.

We say a voting rule f is score-monotone if it induces a
score for every candidate c 2 C (i.e., each candidate ends up
with some real number, and the one with the maximal one
is chosen), and the following holds: given two preference
profiles R1 = (�

i

)
i2V

and R2 = (�0
i

)
i2V

, if for all a, b 2
C \ {c} we have a �

i

b () a �0
i

b, and under R1, c is in
a position that is no lower than its position in R2, then c’s
score under R1 is at least as high as its score in R2. These
properties hold for the common voting rules which will be
used in this paper.

Scoring Rules: A scoring rule is defined by a vector of
scores, (↵1, . . . ,↵m

), where ↵1 � · · · � ↵
m

= 0, ↵1 >
03 and m is the number of candidates. Given a voter
i 2 V , let rank

i

(c) be the rank of candidate c in the
preference order of i. Given a set of voters Q ✓ V ,

3Assuming ↵
m

= 0 is no loss of generality: if ↵
m

> 0 score
vector can be normalized by setting ↵

j

= ↵
j

� ↵
m

.



let score↵

c

(Q) =
P

i2Q

↵ranki(c). Given a set of voters
Q ✓ V , the output of Scoring

↵

(Q) is a member of
argmax

c2C

score↵

c

(Q) (if there are ties, we break them
according to some tie-breaking rule). Many scoring
rules are widely used. For example, the plurality rule,
where ↵1 = 1 and ↵

j

= 0 for all j � 2, the veto rule,
where ↵

j

= 1 for all j < m, and ↵
m

= 0, both of
which are specific examples of the family of k-approval
scoring rules, in which ↵1 = . . . = ↵

k

= 1 and ↵
k+1 =

. . . = ↵
m

= 0. Another common scoring rule is the
Borda rule, where ↵

j

= m� j for all j 2 {1, . . . ,m}.
Copeland Rule: Given a set of voters Q ✓ V , we say that

a candidate c beats c0 in a pairwise election under
Q if a majority of the members of Q prefer c to c0.
For each candidate c 2 C, we let scoreCp

c

(Q) to be
the number of candidates that c beats in a pairwise
election, minus the number of candidates that beat
c. The Copeland voting rule outputs Copeland(Q) =
argmax

c2C

scoreCp
c

(Q).

We note that both scoring rules and Copeland have a nat-
ural notion of a candidate score, and were conceptualized
as such in [6]. This will be instrumental in defining voting
misrepresentation, as we do in the following section.

Definition 1. Given a voting rule f which induces a can-
didate score, we let score

f

(c,Q) to be the score of c 2 C
under f , when the voter set is Q ✓ V .

4. THE MISREPRESENTATION RATIO
We are interested in settings where the set of voters is par-

titioned into districts: these are z disjoint sets D1, . . . , Dz

whose union is V . The election winner under this model is
determined by applying the voting rule f to D1, . . . , Dz

; the
candidate who wins the greatest number of districts is the
winner (ties are broken using some tie-breaking rule).

Definition 2. Given a partition of voters into z districts
D = {D1, . . . , Dz

}, let w be the winner of the election when
voters are partitioned into districts as per D. The misrep-
resentation ratio is the ratio between the maximum score of
any candidate under f , and the score of w. Formally:

MR(V,D, f) =
max

c2C

score
f

(c, V )
score

f

(w, V )
.

Note that MR(V,D, f) � 1; if MR(V,D, f) = 1 then the
winner of the district elections completely captures the pop-
ular vote (as measured by f). The higher MR(V,D, f), the
less popular the winning candidate is in the eyes of the peo-
ple; thus, district elections with a high misrepresentation
ratio are ones where voters’ preferences are not appropri-
ately aggregated, due to the e↵ects of district elections.

Remark 1. In this work we assume all districts have the
same number of voters. Without any assumptions on the
number of voters in each district, the worst case misrepre-
sentation ratio (Definition 2) can be arbitrarily high: con-
sider 2` + 1 districts. Suppose ` + 1 of the districts have
only three voters, and ` of them have M voters, where M
is a very large number. There are two candidates, A and
B; candidate A wins all votes in the ` districts where there
are M voters, and candidate B wins 2 of the 3 votes in the

` + 1 districts holding three voters. Thus, the total num-
ber of votes for B is O(`), and the total number of votes
for A is O(M`), resulting in an arbitrarily high misrepre-
sentation. Our results can be extended by incorporating an
additional parameter: max

D,D

02D
|D|
|D0| ; however, in the in-

terest of space and clarity, we assume that districts are of
equal size.

5. BOUNDS ON THE MISREPRESENTATION
RATIO

In what follows, we establish upper bounds on the worst-
case misrepresentation ratio; we show that our bounds are
tight, i.e. that there exist district elections where the bound
holds.

Furthermore, we always refer to the district voting in-
stance hV,C, (�

i

)
i2V

,D, fi as one that maximizesMR, where
|C| = m, |D| = z, for all D 2 D: |D| = n , and f is some
neutral score-monotone rule. We assume that w 2 C is the
winner of the district elections; that is, w won a plurality
of the districts. We mark d(c) for c 2 C as the number of
districts won by candidate c. We assume that in the case
of a tie for first place in a district, ties are broken against
the district election winner; moreover, the district election
winner must win a strict majority of the districts.

Intuitively, in order to establish our bound, we want to
create the worst possible election. Such an election would
have the candidate w win by as small a margin as possi-
ble, with some other candidate p 6= w being as popular as
possible while losing a majority of the districts.

Given a score inducing voting rule f , we let L
n

(f) be the
maximal score that a candidate can get while still losing an
n voter election, and M

n

(f) be the maximal score that a
candidate can get and win an n voter election. For example,
L

n

(Plurality) =
⌃
n

2

⌥ � 1, and M
n

(Plurality) = n. The fol-
lowing lemma o↵ers some insights regarding the number of
districts won by each candidate in an instance maximizing
MR.

Lemma 1. If f is a score-monotone, neutral rule then
there is a district voting instance maximizing MR such that:

1. if w does not win the election in a district D, then w
is ranked last by all voters in D.

2. If the candidate p wins in D, then it is ranked first by
all voters in D; if not and the winner is not w, then
the score of p from D is L

n

(f).

3. d(p) = d(w)�1 if m > 2 or z is odd, otherwise d(p) =
d(w)� 2.

Proof. If w loses the election in a district D, let i 2 D
be a voter who did not rank w last; we can simply swap
the candidate that was ranked last by i with w in i’s rank-
ing. This will result in a voter profile where the score of
w is weakly lower, and the score of every other candidate
is weakly higher (by the score monotonicity and neutral-
ity of f). Furthermore, if p wins the election in D, but is
not ranked first by some voter i 2 D, swapping p with the
candidate ranked first by i (this is not w by the previous
observation) will result in p having a weakly higher score.
Whenever p loses the election in a district, its score from
that district is lower than the score that it could have ob-
tained by winning a district, but as we wish to maximize it



(and we do not care for the score of candidates other than
w and p), p should score L

n

(f).
To show that d(c)  d(p) for all c 6= w, suppose there

is a candidate c 6= w, p for which d(c) > d(p). Changing
districts who voted for c to vote for p will only improve p’s
score while not changing w as winner; thus, d(c)  d(p) for
all c 6= p, w.

For 2 candidates and an even number of districts, the dif-
ference between the number of districts must be at most 2;
if it is more, we can take districts voting for w and change
them to p, improving p’s score and hurting w (while hav-
ing w remain the election winner). For 2 candidates, if the
number of districts is odd we do a similar process, reaching
a di↵erence of 1.

Now, suppose w has won q more districts than p, and
q > 2. In this case, we can take some district where w won
and make p the winner in that district. That would strictly
improve p’s score, reduce w’s score and maintain w as the
overall election winner. This establishes that d(w)  d(p) +
2. Now, we wish to show that if m � 3 then d(w) = d(p)+1.
If d(c) = 0 for all c 6= w, p then we are back in the two
candidate case which we have previously covered, and if z is
even, we can give one of w’s district to c. If there is some
district D won by some c 6= w, p and d(w) = d(p) + 2 then
we can make p win c’s district, weakly improving its score
while maintaining w’s score at the same level, and keeping
w as the district election winner.

5.1 Scoring Rules
We begin our investigation by bounding MR when f is a

scoring rule. We begin with a simple technical lemma.

Lemma 2. For every scoring rule f = Scoring
↵

, where
↵ = (↵1, . . . ,↵m

), if ↵1 > ↵2, L
n

(f) = ↵1(
⌃
n

2

⌥ � 1) +
↵2(

⌅
n

2

⇧
+ 1). If ↵1 = ↵2, denote ↵0 as the maximal ↵

i

such
that ↵

i

< ↵1, then L
n

(f) = (n� 1)↵1 + ↵0.

Proof. We shall consider some candidate c 2 C which we
make the winner, while giving candidate p 2 C the maximal
score for a runner up. First, showing that there indeed can
be a winner with a higher score, if ↵1 > ↵2, if

⌃
n

2

⌥�1 voters
give ↵1 to p and ↵2 to c, while the rest of the voters give ↵1

to c and ↵2 to p, we reach the desired score for p while c is
the winner. If ↵1 = ↵2, for n � 1 voters giving ↵1 or ↵2 to
both p and c, and the final voter giving ↵1 points to c and
↵0 points to p, we again reach the desired score while c is
the winner.

Now, we shall show no higher score is possible. For the
case ↵1 = ↵2 it is obvious: the only higher score possible
is n↵1, which is the maximal one, hence the winner’s. For
↵1 > ↵2, suppose there is a better L

n

(f), which is described
as z1↵1 + z2↵2 + . . . + z

m

↵
m

. If z1  ⌃
n

2

⌥ � 1, then this
sum is smaller than that suggested in the lemma. If z1 >⌃
n

2

⌥ � 1, this means the winner c has a score of at most
↵1(

⌃
n

2

⌥ � 2) + ↵2(
⌅
n

2

⇧
+ 1). This score needs to be higher

than z1↵1 + z2↵2 + . . . + z
m

↵
m

, but it is lower than the
lemma’s suggested L

n

(f), reaching a contradiction.

Corollary 1. If f = Scoring
↵

then (z + 1)L
n

(f) �
M

n

(f) for any z > 1.

Proof. Given a vector ↵ = (↵1, . . . ,↵m

) we have that
M

n

(f) = n↵1. Now, by Lemma 2, we know that

L
n

(Scoring
↵

) �
⇣ln

2

m
� 1

⌘
↵1,

from which the claim trivially follows.

The following lemma tells us the number of districts that
must be won by the winning candidate in a district election
that maximizes MR.

Lemma 3. Let hV,C, (�
i

)
i2V

,D, fi be a district voting
instance which maximizes MR, where f is a scoring rule. z
(number of districts) can be written as `m+r (`, r 2 N[{0}
and r < m). There is an MR maximizing instance where
the number of districts that w wins is at most ` + 2, and
every other candidate wins at least `� 1 districts.

Proof. Recall that d(c) be the number of districts that

each candidate c 2 C wins. In order to win the district

election, w needs to win a plurality of the districts; that is,

d(w) � d(c) + 1 for all c 2 C \ {w}. Now, let us denote the

score of w from winning a district as x
w

; by Lemma 1 w gets

no votes from all districts where it loses (the case where there

are two candidates and an even number of districts can be

handled similarly, and is omitted due to space constraints).

Now, p gets a score of x
p

from a district that w wins, a score

of M
n

(f) from a district that it wins, and a score of L
n

(f)

from a district that some other candidate wins. Putting it

all together we have:

x

p

d(w)+M

n

(f)d(p)+L

n

(f)(
P

c2C\{w,p} d(c))
x

w

d(w)

=

x

p

x

w

+
M

n

(f)d(p)+L

n

(f)(
P

c2C\{w,p} d(c))
x

w

d(w)

.

Since d(w) = d(p) + 1,
P

c2C\{w,p} d(c) = z � 2d(w) + 1,
hence our equation is

x
p

+M
n

(f)� 2L
n

(f)
x
w

+
(z + 1)L

n

(f)�M
n

(f)
x
w

d(w)
. (1)

We are interested in maximizing (1) as a function of d(w);
the derivative of (1) with respect to d(w) is

(z + 1)L
n

(f)�M
n

(f)
x
w

· 1
�d(w)2

which is positive if and only if (z + 1)L
n

(f) < M
n

(f). Ac-
cording to Corollary 1, (z + 1)L

n

(f) > M
n

(f) then (1) is
maximized when d(w) is as small as possible. If r = 0 then
d(w) = `+1 while every other candidate gets ` (if d(w)  `
more than one candidate will have such a score). If r � 1,
then d(w) must be more than `+ 1, as more than one can-
didate must get that score, so d(w) = ` + 2 and other can-
didates can get `+ 1 districts or less.

The following lemma discusses the score that w receives
in districts that it wins.

Lemma 4. For every scoring rule f , if n � z, z > 3
(i.e., number of voters in each district is far larger than
the number of districts), the score given to w in districts in
which it wins must be the minimal possible score needed to
win a district in an instance maximizing MR.

Proof. Note that this is not trivial – it is not obvious
that we do not wish to increase w’s score to allow p to receive
a higher score as a 2nd place candidate.



For simplicity, we shall assume n is an odd number and
↵1 > ↵2. The proof is equivalent in the other cases. We
can also assume m > 2, as otherwise this is already set by
Lemma 1.

From Equation 1, we know that we seek to maximize

x
p

+M
n

(f)� 2L
n

(f)
x
w

+
(z + 1)L

n

(f)�M
n

(f)
x
w

d(w)
.

We know M
n

(f) = n↵1 and L
n

(f) = ↵1(
⌃
n

2

⌥ � 1) +

↵2(
⌅
n

2

⇧
+ 1) from Lemma 2, hence we wish to maximize:

x

p

+n↵1�(n�1)↵1�(n+1)↵2

x

w

+
(z+1)(dn

2 e↵1+bn

2 c↵2)�n↵1

x

w

d(w)

= x

p

+↵1�(n+1)↵2

x

w

+
(z+1)(dn

2 e↵1+bn

2 c↵2)�n↵1

x

w

d(w)

.

Now, whatever x
w

is, we wish to maximize x
p

as long as
x
w

> x
p

. For a particular scoring rule f , x
p

= x
w

� s
n

(f)
for some function s

n

4. Therefore, looking at the derivative
of our equation according to x

w

, we get

1
x

2
w

✓
s
n

(f)� ↵1 + (n+ 1)↵2�
(z+1)(dn

2 e↵1+bn
2 c↵2)+n↵1

d(w)

◆

= 1
x

2
w

✓
s
n

(f) + ↵1
n�d(w)�(z+1)dn

2 e
d(w) +

↵2
d(w)(n+1)�(z+1)bn

2 c
d(w)

◆
.

As n � z and z > 3, this is always negative as the ↵1 and
↵2 components overwhelms all others (since s

n

(f) < n↵1),
hence x

w

needs to be minimal in size.

Lemma 5. For k-approval voting rules, the minimal score
a winner can get in an election is

⌅
nk

m

⇧
+ 1 if m

⌅
nk

m

⇧
+ 1 =

nk. Otherwise, it is
⌃
nk

m

⌥
+ 1.

Proof. Since nk points are allocated by voters, a winner
must have at least a score of

⌅
nk

m

⇧
+ 1. If m

⌅
nk

m

⇧
+ 1 = nk,

then it is possible that w gets
⌅
nk

m

⇧
+ 1 votes, while all

other candidates get
⌅
nk

m

⇧
. If m

⌅
nk

m

⇧
+ 1 < nk, there is

no allocation of nk points such that only a single candidate
gets

⌅
nk

m

⇧
+ 1, hence the winner will need to get one more

point, with the rest of the points to be allocated among the
other candidates, with none of them getting more than

⌃
nk

m

⌥

votes.

Armed with Lemmata 1 – 5, we now proceed to analyze
specific voting rules.

Theorem 1. Suppose that n = qm + s and z = `m + r,
where q, s, `, r 2 N[{0} and s, r < m; then MR(V,D,Plurality)
is at least

1 +

n� 2

⌃
n

2

⌥
+ 1

q + 2

+

(z + 1)(

⌃
n

2

⌥
� 1)� n

(`+ 2)(q + 2)

and at most

1 +

n� 2

⌃
n

2

⌥
+ 1

q + 1

+

(z + 1)(

⌃
n

2

⌥
� 1)� n

(`+ 1)(q + 1)

.

In particular, MR(V,D,Plurality) is in ⇥(m2).
4Obviously, x

w

�nmax
i

(↵
i

�↵
i+1)  x

p

, as x
p

can always be
ranked below x

w

. On the other hand, x
p

 x
w

�min
i

(↵
i

�
↵
i�1).

Proof. By Lemma 3 and Corollary 1, we know that w
wins either ` + 1 or ` + 2 districts. Plugging in the values
L

n

(Plurality) =
⌃
n

2

⌥�1 and M
n

(Plurality) = n into (1), we
have that MR(V,D,Plurality) equals

x
p

+ n� 2
⌃
n

2

⌥
+ 2

x
w

+
(z + 1)(

⌃
n

2

⌥� 1)� n

x
w

d(w)

(x
w

and x
p

denote the score of w and p (respectively) when
w wins a district). We are left just with determining the
value of x

p

and x
w

. For reasons similar to the ones detailed
in Lemma 1, it holds that x

p

= x
w

� 1.
Due to Lemma 4, MR(V,D,Plurality) is maximized when

x
w

is minimal; We have that w receives q+2 votes if s � 2,
and q + 1 otherwise. Plugging this into (1) we obtain the
desired result.

The second expression in the upper bound of Theorem 1,
n�2dn

2 e+1

q+1 can be upper bounded by 1
q+1 , which is at most

m

n

. Thus, if the number of voters dominates the number
of candidates, this expression has little e↵ect on MR. The
second expression can be upper bounded as follows

(z + 1)(

⌃
n

2

⌥
� 1)� n

(`+ 1)(q + 1)


zn

(`+ 1)(q + 1)

 m

2

A similar lower bound of ⌦(m2) can be shown as well, which
concludes the proof.

Note that tightness is achieved as our constructed expres-
sions were dependent on particular voting profiles (as de-
scribed in Lemma 1), and hence carry on to these expres-
sions.

As some parliamentary systems require not a plurality of
districts to become a winner, but a majority, we also note
the MR in these cases.

Corollary 2. If the number of districts needed for a vic-
tory is above 50%, MR for plurality is ⇥(m).

Proof. Suppose that n = qm + s for q,m 2 N, s <
m. As d(w) in our expression is now

⌅
n

2

⇧
+ 1, and thanks

to Lemma 4 we know we should minimize x
w

. Hence, w
receives q+2 votes if s � 2, and q+1 otherwise. Thanks to
Lemma 1 d(p) =

⌃
n

2

⌥� 1, and its score in the other districts
is x

w

� 1. The formula turns out to be, for s � 2 (very
similar figure for s  1):

q + 1
q + 2

+
n(

⌃
n

2

⌥� 1)

(q + 2)(
⌅
n

2

⇧
+ 1)

n! 1⇡ m.

Theorem 2. Suppose that the number of districts is ex-
pressed as z = `m+ r, where `, r 2 N[ {0} and r < m; then
MR(V,D, k-approval) for k > 1 is at least

1 +

n(z + `+ 2)� (z � `+ 1)

(`+ 2)(

l
nk

m

m
+ 1)

and at most

1 +

n(z + `+ 1)� (z � `)

(`+ 1)(

j
nk

m

k
+ 1)

.

Proof. By Lemma 3 and Corollary 1, we know that w
wins either ` + 1 or ` + 2 districts. Plugging in the values
L

n

(k -approval) = n�1 andM
n

(k -approval) = n into (1), we

have that MR(V,D, k -approval) equals
xp+2�n

xw
+ kn�(z+1)

xwd(w)



(x
w

and x
p

denote the score of w and p (respectively) when
w wins a district).As before, for reasons similar to the ones
detailed in Lemma 1, x

p

= x
w

� 1.
Due to Lemma 4, MR(V,D, k -approval) is maximized when

x
w

is minimal; According to Lemma 5, x
w

=
⌅
nk

m

⇧
+ 1 if

m
⌅
nk

m

⇧
+ 1 = nk. Otherwise, it is x

w

=
⌃
nk

m

⌥
+ 1. Plug-

ging these values into the equation, we receive the desired
result.

One of the main challenges in computing a closed form
formula for MR for general scoring rules is that one must
first decide what is the minimal score that w can obtain
while winning a district for a given score vector ↵. This
problem can be thought of as a bin packing problem: can-
didates can be thought of as bins, and the scores must be
packed into them. It is only recently that a polynomial time
algorithm has been proposed for bin packing problems with
a constant number of types (also commonly referred to as
the one-dimensional cutting stock problem) [21]. Thus, for
general scoring rule we o↵er looser bounds on the number
of votes needed to win:

Let S
↵

=
P

m

j=1 ↵j

; then the minimal number of votes

needed to win a district is at most
⌃
nS↵
m

⌥
+↵1, and at least⌃

nS↵
m

⌥
: we allocate the scores as evenly as possible among

the candidates, and break the tie in favor of the winner
using at most ↵1 points. Of course, in some cases this can
be improved, but it depends on ↵, and on the divisibility of
nS

↵

and m. The following theorem uses these loose bounds
to bound MR for the Borda scoring rule.

Theorem 3. MR(V,D,Borda) is in ⇥(m2).

Proof. According to Lemma 2, L
n

(Borda) = (m�1)(
⌅
n

2

⇧�
1)+(m�2)(

⌅
n

2

⇧
+1), and M

n

(Borda) = n(m�1). We again
write x

w

and x
p

to be the number of votes that are won by
w and p (respectively) in a district where w wins. Thus, MR
is

x
p

+ n(m� 1)� 2(m� 2)(n� 1)
x
w

+

(z + 1)(m� 1)(m� 2)n
x
w

d(w)
.

We can also show the score p receives in a district won by
w is at least x

w

� (m � 1), and at most x
w

� 1. Further-

more, we observe that x
w

is at least

⇠
(m�1)(m�2)

2 n

m

⇡
, which

is at least (m�2)2n
2m . Furthermore, x

w

is upper bounded by⇠
(m�1)(m�2)

2 n

m

⇡
+ (m � 1), which is at most m(n+2)

2 . Thus,

MR is upper bounded by

2m((m� 2)n(m+ 1)(m� 1) + (m� 1))
(m� 2)2n

.

We note that the final expression has n in both the numera-
tor and denominator and is thus O(m2). We may similarly
lower bound MR(V,D,Borda) by a similar value.

5.2 Copeland
When using the Copeland voting rule, one can get an un-

defined value for MR, as a score of 0 is possible for the
winner.

Example 1. Let us have two identical districts, each con-
taining 21 voters with the preference w � p � a and 20

Algorithm 1 Monte-Carlo MR Approximation

1: procedure Expected-MR ( M , B, ", �)

2: s =
l

B

2·ln 2
�

2 "

2

m

3: T = 0
4: for i = 1 to s do

5: Sample an election outcome E from M
6: w = argmax

c2C

score(c, V ) // The winner
7: s

m

= max
c2C

score(c, V ) // Maximal score
8: Rsamp

i

= sm
sw

// sampled MR
9: T = T +Rsamp

i

10: return r̂ = T

s

// average of sampled MRs

voters who have p � w � a. A third district contains 41
voters with the preference p � w � a. w wins the 2 first
districts, becoming the ultimate winner. But, looking glob-
ally, p’s Copeland score is 2, while w’s Copeland score is 0,
making MR(V,D,Copeland) undefined.

The Copeland score can be additively adjusted by adding
to each candidate’s score a fixed amount that is larger than
m. However, Copeland’s performance remains bad, as is
captured by Theorem 4.

Theorem 4. Under Copeland, the winner w may have
the worst possible Copeland score, while another candidate
has the best possible Copeland score.

Proof. The worst possible Copeland score is �(m� 1),
while the best is m � 1. Taking z = `m + r, z > 4 and
m > 2, we take ` + 2 districts, in each of them all voters
rank w � p � . . .. We now take ` + 1 districts, in each of
them all voters rank p � . . . � w. Finally, the rest of the
districts are divided between the m � 2 other candidates,
each candidate c 2 C \{p, w} getting at most `+1 districts,
in which every voter ranks c � p � . . . � w. Since `+2 < n

2 ,
w has lost to all candidates for most voters, and therefore
w’s Copeland score is �(m � 1). p, on the other hand, is
preferred by most voters over any other candidate, leading
its score to be m� 1.

6. THE MISREPRESENTATION RATIO UN-
DER UNCERTAIN VOTES

In Section 5 we established bounds on the misrepresen-
tation ratio by constructing pathological examples: settings
where districting e↵ects were so pronounced as to cause an
extremely unpopular candidate to win the elections, despite
the existence of a clearly better alternative. We now take
the average-case, rather than the worst-case, approach, and
ask how common are instances where misrepresentation is
high.

We do this in the form of a probabilistic generative model,
utilizing partial information to inform our assumptions on
the general population. Any instantiation of the model is a
voting domain for which we can compute the misrepresenta-
tion ratio. Thus, MR is a random variable and we evaluate
the expected MR. A naive solution is to exhaustively search
over the space of possible election outcomes; for each such
outcome we can compute its probability of occurring under
the generative model, and the MR value for that outcome;
we can then sum the product of the two across all outcomes
to get the expectedMR. However, such an exhaustive search



is intractable, as the space of outcomes can be prohibitively
large, especially when there are many candidates, voters and
districts. We propose an alternative approximate solution,
based on a Monte-Carlo algorithm. Our algorithm requires
a bound on the MR for the examined domain, and such can
be found for many cases (see previous section).

We assume the generative model is given in the form of a
black-box, which outputs a sampled election outcome, con-
sisting of the votes of every voter in every district. We fur-
ther assume that the winner of the election can be computed
in polynomial time5. Denote the generative model asM , and
by r = E

M

(MR) the expectation of MR under the model
M . Our proposed algorithm is“probably approximately cor-
rect”: given two parameters, " and �, the algorithm returns
an approximation r̂ to r, such that with high probability 1��
the returned value r̂ is very close to r, so that |r̂ � r|  ".
The running time of the algorithm depends on " and �; it is
quadratic in 1

"

and logarithmic in 1
�

.
Our proposed algorithm is a Monte-Carlo algorithm, but

it is only appropriate to voting rules where there is a known
bound on the possible MR values. 6 The minimal MR value
is 1 (as this is the ratio between the maximal score of any
candidate and the score of a specific candidate, namely the
winner). Given a bound H on the maximal MR in a domain,
we refer to the MR value range as B = H � 1. The runtime
of our algorithm is quadratic in B. The method is given in
Algorithm 1, and we provide a proof for its correctness.

Theorem 5. The value returned by Expected-MR is an
", � approximation for the expected MR under M : with prob-
ability at least 1� � the returned value r̂ is within a distance
" of r = E

M

(MR), i.e: |r̂ � r|  ".

Proof. We note that the Rsamp
i

computed inside the loop
is the MR in a specific instantiation of an election outcome
E sampled from the generative model M (see Definition 2),
so each Rsamp

i

is a random variable, whose expectation is
r = E

M

(MR) (i.e. E[Rsamp
i

] = r). Our algorithm computes
T =

P
s

i=1 R
samp
i

, the sum of s i.i.d draws, each of which
has a value of r in expectation, so E[r̂] = E[T

s

] = r. We
use Hoe↵ding’s inequality [24] to show that the number of
samples s that we use achieves the desired accuracy " and
confidence �. Hoe↵ding’s inequality states that if R1, . . . , Rn

are independent random variables, where each R
i

is bounded
so that R

i

2 [a
i

, b
i

], and if T =
P

s

i=1 Ri

, then Pr(|T �
E[T ]| � s")  2 exp

⇣
� 2 s

2
"

2
Pn

i=1(bi�ai)2

⌘
.

Rsamp
i

is the MR in an election outcome obtained under
the generative model M , so Rsamp

i

is bounded in the range
[1, H] (i.e., by our assumption, the MR value range is B =

H�1). Applying Hoe↵ding’s bound and substituting
B

2·ln 2
�

2 "

2

for s, we get Pr
⇣���T

s

� E[T ]
r

��� � "
⌘
 � as required.

7. SIMULATIONS
We now use our Algorithm Expected-MR to analyze the

MR in several voting domains. We begin with a noisy ver-
sion of the example domain described in the introduction.

5Not all voting rules admit a polynomial winner determina-
tion algorithm. As our algorithm samples election outcomes,
its runtime in this case would not be polynomial.
6Our method is akin to Monte-Carlo methods used for an-
alyzing voting under various forms of uncertainty [14, 2, 4,
5].
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Figure 1: The e↵ects of the noise on the MR

We fix C = {w, p}, and the number of districts to 11: 6
districts of type “A” and 5 of type “B”, modeling heteroge-
neous and homogenous districts respectively. In type A dis-
tricts, every voter v votes randomly with Pr[v votes for w] =
1
2 + ", and Pr[v votes for p] = 1

2 � "; in type B districts,
Pr[v votes for w] = ", Pr[v votes for p] = 1 � ", for " 2�
0, 1

2

�
. Figure 1 shows the averaged MR as a function of

the noise " (x-axis). Each point is average MR obtained
for many elections sampled using this probabilistic model;
MR first increases as the noise " grows, until it reaches a
sweet-spot from which it drops. This indicates that for some
models the model noise may not have a monotone e↵ect on
the MR.

In our second experiment, we fix the number of districts
to 15, and range the number of voters in every district
from 100 to 5000. We examined MR of elections with m 2
{3, 4, . . . , 7} candidates. Figure 2a shows the averaged MR
where the preference of every voter in every district is uni-
formly drawn from the set of all m! possible orders of can-
didates, under Borda scoring. The figure shows that in-
creasing the number of voters tends to lower MR. This is
not surprising, as all candidates will likely have nearly the
same score. Next, we consider the Mallows model [30] for
generating voter preferences, where we assume that there
is a “ground truth” for every district, �⇤ (representing the
common ranking of candidates in that district) and disper-
sion parameter � 2 �

1
2 , 1

⇤
. Under the Mallows model every

voter compares every pair of candidates independently and
ranks them correctly (according to �⇤) with probability �.
For every district, �⇤ was drawn uniformly at random and
� ⇠ U( 12 , 1). We used the plurality scoring rule (Figure 2b)
and Copeland voting rule (Figure 2c). As predicted by our
theoretical results, MR grows when there are more candi-
dates. Under Copeland, a fixed amount of m was added
each candidate’s score so that MR would be positive.

Our simulation results indicate that voting misrepresen-
tation may occur in several natural domains. Our second
experiment is “fair” in the sense that there is no preferred
candidate, and yet the MR values are quite high. Also, our
theoretical results agree with experiments in some natural
domains.

8. CONCLUSIONS
This work analyzes district-based elections. We demon-

strate the representability issues that arise in such elections,
and show tight bounds on misrepresentation. We further
show that misrepresentation is a common occurrence under
various natural voter distributions, and that its e↵ect may
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Figure 2: Simulations results

not diminish even when the number of voters is large.
District based elections tend to under-represent smaller

parties; this is a long observed phenomenon (and, in some
countries, a welcome stabilizing feature). However, we do
not focus on smaller parties, but rather show that the pref-
erences of large majorities may be completely unrepresented
(the UK elections of 1951, where the Labour party with
48.8% support lost the elections, and the Conservative party
with 44.3% not only beat it, but had a strong parliamentary
majority, is just one example of these occurrences).

Research into the institutional bias in voting procedures,
beyond control issues, is one which we think deserves more
attention by the computational social choice community.
Very few election systems in the world are proportional,
and the e↵ect this has on the expression of voters’ views
has mostly focused (in political science research) on how
small minorities are hurt. As our analysis shows, large ma-
jorities may also be a↵ected. Further research is needed
with regards to other voting methods. Moreover, further
and complementary concepts may be developed, indicating
unfairness, lack of representation and other problems with
various voting procedures (parliamentary entrance bounds,
common in some countries, are an obvious candidate for
such directions). In addition, while we have focused on an
outcome of a single winner, a coalitional analysis of district
settings may also be of interest.
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ABSTRACT
Kidney exchanges are organized markets where patients swap will-
ing but incompatible donors. In the last decade, kidney exchanges
grew from small and regional to large and national—and soon, in-
ternational. This growth results in more lives saved, but exacerbates
the empirical hardness of the NP-complete problem of optimally
matching patients to donors. State-of-the-art matching engines use
integer programming techniques to clear fielded kidney exchanges,
but these methods must be tailored to specific models and objective
functions, and may fail to scale to larger exchanges. In this paper,
we observe that if the kidney exchange compatibility graph can be
encoded by a constant number of patient and donor attributes, the
clearing problem is solvable in polynomial time. We give neces-
sary and sufficient conditions for losslessly shrinking the represen-
tation of an arbitrary compatibility graph. Then, using real com-
patibility graphs from the UNOS nationwide kidney exchange, we
show how many attributes are needed to encode real compatibil-
ity graphs. The experiments show that, indeed, small numbers of
attributes suffice.

1. INTRODUCTION
There are over 100,000 needy patients waiting for a kidney trans-

plant in the United States, with similar, and increasing, demand
worldwide.1 Complementing potential cadaveric transplantation
via the deceased donor waiting list, a recent innovation—kidney ex-
change [30, 32]—allows patients with willing living donors to par-
ticipate in cyclic donor swaps or altruist-initiated donation chains
to receive a life-saving organ. Kidney exchange now accounts for
roughly 10% of living donation in the US, with that percentage in-
creasing every year.

In reality, participating patients and donors are endowed with
a set of attributes: blood type, tissue type, age, insurance, home
transplant center, willingness to travel, and myriad other measure-
ments of health, personal preference, and logistical constraint. While
some of these features can, at a cost, be temporarily or permanently
changed, the attributes determine the feasibility of a potential do-
nation from each donor to each patient. As a concrete example, a
donor with blood type AB can only give to a patient with that blood
type.

A central aspect of kidney exchange is the clearing problem,
1
https://optn.transplant.hrsa.gov/converge/data/
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gapore.

that is, determining the “best” set of cyclic and chain-based swaps
to perform in a given compatibility graph, which consists of all
participating patients, donors, and their potential feasible transac-
tions. For even simple (but realistic) models of kidney exchange,
the clearing problem is NP-hard [1, 6] and also extremely difficult
to solve in practice [18, 3, 29].

In this paper, we tackle the complexity of the clearing problem
via the introduction of a novel model for kidney exchange that ex-
plicitly takes into account all attributes of the participating patients
and donors. Under the assumption that real kidney exchange graphs
can be represented using just a constant number of attributes, we
show that our model permits polynomial-time solutions to central
NP-hard problems in general kidney exchange. Inspired by classi-
cal results from intersection graph theory, we give conditions on the
representation of arbitrary graphs in our model, and generalize to
the case where participants are allowed to have a thresholded num-
ber of negative interactions between attributes. Noting that real-life
kidney exchange graphs are not arbitrary, we show on actual data
from the United Network for Organ Sharing (UNOS) US-wide kid-
ney exchange that our model permits lossless representation of true
graphs with far fewer attributes than the worst-case theoretical re-
sults require.

2. A NEW MODEL FOR KIDNEY EXCHANGE
In this section, we formalize our model of kidney exchange. We

prove that under this model certain well-known NP-hard problems
in general kidney exchange are solvable in polynomial time. We
also show that, given a compatibility graph, determining the best
set of attributes to change (at some cost) is solvable in polynomial
time.

2.1 Notation & Preliminaries
A kidney exchange can be represented by a directed compati-

bility graph G = (V,E). Each patient-donor pair, or unpaired
altruistic donor, forms a vertex v 2 V , and a directed edge exists
from one vertex to another if the donor at the former can give to the
patient at the latter, i.e., are compatible [32, 33, 34].

In kidney exchange, patients and donors participate in cycles or
chains. In a cycle, each participating vertex receives the kidney of
the previous vertex. All transplants in a cycle must be performed
simultaneously to ensure participation, and thus are limited to some
small length in practice. This ensures that no donor backs out after
her patient has received a kidney but before she has donated her
kidney. Most fielded kidney exchanges—including UNOS—allow
only 2- and 3-cycles. In a chain, a donor without a paired pa-
tient enters the pool, donating his kidney to a patient, whose paired
donor donates his kidney to another patient, and so on [27, 35, 31].

https://optn.transplant.hrsa.gov/converge/data/


Chains can be executed non-simultaneously2 and thus chains can
be longer (but typically not infinite) in length. Most exchanges—
including UNOS—see great gains through the use of such “altruist-
initiated” chains.

We consider a model that imposes additional structure on an ar-
bitrary compatibility graph. For each vertex vi 2 V , associate with
its constituent donor and patient attribute vectors di and pi, re-
spectively. Here, the qth element dqi of di takes on one of a fixed
number of types—for example, one of four blood types (O, A, B,
AB), or one of a few hundred standard insurance plans. Then, for
vi 6= vj 2 V , we define a compatibility function f(di,pj), a
boolean function that returns the compatibility of the donor of vi
with the patient of vj .

Given V and associated attribute vectors, we can uniquely deter-
mine a compatibility graph G = (V,E) such that E = {(vi, vj) :
f(di,pj) = 1 8vi 6= vj 2 V }. We claim that this model accu-
rately mimics reality, and we later support that claim with strong
experimental results on real-world data. Furthermore, under this
new model, certain complexity results central to kidney exchange
change (for the better), as we discuss next.

2.2 The Clearing Problem is Easy (in Theory)
We now tackle the central computational challenge of kidney ex-

change: the clearing problem. Well-known to be NP-hard [1, 6],
a variety of custom clearing algorithms address adaptations of the
clearing problem in practice.3 We show that, in our model, the
clearing problem itself is solvable in polynomial time.

Formally, we are interested in a polynomial-time algorithm that
solves the L-CYCLE-COVER problem—that is, finding the largest
disjoint packing of cycles of length at most L. For ease of expo-
sition, in this section we use “cycles” to refer to both cycles and
chains; indeed, it is easy to see that altruist donors are equivalent to
standard patient-donor pairs with a patient who is compatible with
all non-altruist vertices in the pool. Then, a chain is equivalent to
a cycle with a “dummy” edge returning to the altruist. Also, again
for ease of exposition, we assume the value of a chain of length L

is equal to a cycle of length L, due to the donor at the end of the
chain giving to a patient on the deceased donor waiting list.

Recall that we are working in a model where each vertex vi

belongs to one of a fixed number of types determined solely by
its attribute vectors di and pi. Let ⇥ be the set of all possible
types, and ✓ 2 ⇥ represent one such individual type. Then, with a
slight abuse of notation, we can define a type compatibility function
f(✓, ✓0) = 1 if and only if there is a directed edge between vertices
of type ✓ and ✓

0. (Note that this captures chains and altruist donors
as described above.)

A key observation of this section is that any additional edge
structure that is imposed on the graph—such as a cycle cover—
would be independent of the identity of specific vertices, rather, it
would only depend on their types, as vertices of the same type have
the exact same incoming and outgoing neighborhoods. For exam-
ple, in any cycle cover, if vi and vj are two vertices of the same
type, we can insert vj in place of vi, and vi in place of vj , and ob-
tain a feasible cycle cover of the same size. This observation drives
our theoretical algorithmic results.

In more detail, for a vector of types ✓ = (✓1, . . . , ✓k) 2 ⇥k, let

2To see why this is, take the case where a donor backs out of a
chain after his paired patient received a kidney, but before his own
donation. Unlike in the case of a broken cycle, no pair in the re-
maining tail of the planned chain is strictly worse off; that is, no
donor was “used up” before her paired patient received a kidney.
3For an overview of practical approaches to solving the clearing
problem, see a recent survey due to Mak-Hau [25].

us denote fC(✓) = 1 if and only if f(✓t, ✓t+1) = 1 for all t < k,
and f(✓k, ✓1) = 1. In other words, fC(✓) = 1 if every k vertices
i1, . . . , ik of types ✓1, . . . , ✓k, respectively, are involved in a cycle
in the graph. Furthermore, for L  n = |V |, denote

T (L) = {✓ 2 ⇥k : k  L and fC(✓) = 1}.

That is, T (L) contains all vectors of types that induce feasible cy-
cles of length at most L.

Now consider the following algorithm for L-CYCLE-COVER in
our model:

Algorithm 1 L-CYCLE-COVER

1. C⇤  ;

2. for every collection of numbers {m✓}✓2T (L) such thatP
✓2T (L) m✓  n

• if there exists cycle cover C such that kCkV > kC⇤kV
and for all ✓ 2 T (L), C contains m✓ cycles consisting of
vertices of the types in ✓ then C⇤  C

3. return C⇤

Here, kCkV denotes the number of unique vertices matched in a
cycle cover C. We claim that, in our setting, Algorithm 1 is optimal
and computationally efficient.

THEOREM 1. Suppose that L and |⇥| are constants. Then Al-
gorithm 1 is a polynomial-time algorithm for L-CYCLE-COVER.

PROOF. We start by verifying that Algorithm 1 is indeed opti-
mal. Consider the optimal cycle cover C⇤. For each ✓ 2 T (L),
let m⇤

✓ be the number of cycles in C⇤ that are consistent with the
types in ✓. Clearly

P
✓2T (L) m

⇤
✓  n, as there are only n vertices

so there cannot be more than n cycles (in fact, n/2 is also a valid
upper bound). Therefore, Algorithm 1 considers the collection of
numbers m

⇤
✓ in Step 2. Because this collection of numbers does

induce a valid cycle cover that is of the same size as C⇤, the algo-
rithm would update its incumbent cycle cover if it was not already
optimal.

We next analyze the running time of the algorithm. First, note
that it is straightforward to check whether the numbers {m✓}✓2T (L)

induce a valid cycle cover. Since T (L) consists only of valid cycles
according to the compatibility function fC , we just need to check
that there are enough vertices of type ✓ to construct all the cycles
that require them. This simply amounts to multiplying each m✓

by the number of times type ✓ appears in ✓, and verifying that the
sum of these products over all ✓ in T (L) is at most the number of
vertices of type ✓.

Second, we argue that there is only a polynomial number of pos-
sibilities to construct a collection of numbers {m✓}✓2T (L) such
that

P
✓2T (L) m✓  n. Indeed, this number is at most (n +

1)|T (L)|. Moreover, |T (L)|  L · |⇥|L. Because |⇥| and L are
constants, |T (L)| is also a constant. The expression (n+ 1)|T (L)|

is therefore a polynomial in n.

Even for constant L, the running time of Algorithm 1 is exponen-
tial in k. But this is to be expected. Indeed, any graph can trivially
be represented using a set ⇥ of types of size n, where each vertex
has a unique type, and a compatibility function fC that assigns 1
to an ordered pair of types if the corresponding edge exists in G.
Therefore, if the running time of Algorithm 1 were polynomial in
n and k, we could solve the general L-CYCLE-COVER problem in
polynomial time—and that problem is NP-hard [1].



2.3 Flipping Attributes is Also Easy (in The-
ory)

While patients and donors in a kidney exchange are endowed
with an initial set of attributes, it may be possible in practice to—at
a cost—change some number of those attributes to effect change in
the final matching. For example, the human body naturally tries to
reject, to varying degrees, a transplanted organ. Due to this, nearly
all recipients of kidneys are placed on immunosuppressant drugs
after transplantation occurs.4 However, preoperative immunosup-
pression can also be performed to increase transplant opportunity—
but at some cost to the patient’s overall health.

With this in mind, we extend the model of Section 2.2 as follows.
Associate with each pair of types ✓, ✓

0 2 ⇥ a cost function c :
⇥ ⇥ ⇥ ! R representing the cost of changing a vertex of type ✓

to type ✓

0. Then, the L-FLIP-AND-CYCLE-COVER problem is to
find a disjoint packing of cycles of length at most L that maximizes
the size of the packing minus the sum of costs spent changing types.
Building on Theorem 1, this problem is also solvable in polynomial
time.

THEOREM 2. Suppose that L and |⇥| are constants. Then L-
FLIP-AND-CYCLE-COVER is solvable in polynomial-time.

PROOF PROOF SKETCH. For any type ✓i 2 ⇥, there are ni

vertices. Then, for each of the (|⇥| � 1) choices of which type
✓ 6= ✓i to switch to, choose how many vertices from ✓i will switch
to a different type; there are (ni + 1) choices. Do this for all |⇥|
types, resulting in

Q
✓i2⇥[(ni + 1)(|⇥| � 1)] choices. Note thatP

✓i2⇥(ni+1) = n+ |⇥|, meaning
Q

✓i2⇥[(ni+1)(|⇥|�1)] 
((n + |⇥|) · (|⇥| � 1)/|⇥|)|⇥|  (n + |⇥|)|⇥|. Since |⇥| is
a constant, this is polynomial in n; invoking an adaptation of the
polynomial time Algorithm 1 that subtracts out c(✓, ✓0) for every
vertex that switches from ✓ to ✓

0, for each of the polynomially-
many choices, concludes the proof.

3. A CONCRETE INSTANTIATION:
THRESHOLDING

As motivated in Sections 1 and 2, compatibility in real kidney
exchange graphs is determined by patient and donor attributes, such
as blood or tissue type. In particular, if an attribute for a donor and
patient is in conflict, they are deemed incompatible. Motivated by
that reality, in this section, we associate with each patient and donor
a bit vector of length k, and count incompatibilities based on any
shared activated bits between a patient and potential donor.

As a concrete example, consider human blood types. At a high
level, human blood contains A antigens, B antigens, both (type
AB), or neither (type O). AB-type patients can receive from any
donor, A-type (B-type) can receive from O-type and A-type (B-
type) donors, and O-type patients can only receive from O-type
donors. In our bit model, this is represented with k = 2, such that
a donor’s first (resp. second) bit is set if his blood holds A (resp. B)
antigens. and a patient’s first (resp. second) bit is set if she cannot
receive from blood containing A (resp. B) antigens. Thus, the type
space ⇥ = 2{has-A,has-B} ⇥ 2{no-A,no-B}; in general, |⇥| = 22k.

Formally, unless otherwise stated, throughout this section G will
refer to a directed graph with vertex set V = [n] := {1, . . . , n}
and edge set E, and with each i 2 V associated with two k-bit
vectors di,pi 2 {0, 1}k. Let Qd(i) = {q 2 [k] : diq = 1} be the
set of conflict bits for the donor associated with vertex i 2 V , and
similarly let Qp(i) = {q 2 [k] : piq = 1}. For i, j 2 V such that

4
https://www.kidney.org/atoz/content/immuno

i 6= j, the threshold feasibility function f

t
thresh is defined as

f

t
thresh(di,pj) =

(
1 if |Qd(i) \Qp(j)|  t,
0 otherwise.

.

Note that |Qd(i) \Qp(j)|  t if and only if hdi,pji  t.
Kidney exchange graphs constructed using threshold compati-

bility functions are closely related to complements of intersection
graphs [26], which are graphs that have a set associated with each
vertex and an edge between two vertices if and only if the sets in-
tersect. Given a nonnegative integer t, the function f

t
thresh is related

to p-intersection graphs [9, 13], in which an edge exists between
two vertices if their corresponding sets intersect in at least p � 1
elements.

Our model is similar to that of intersection digraphs [36], or
equivalently bipartite intersection graphs [19], both also consid-
ered in [28]. Both of these have mainly been studied under the
assumption that the sets used to represent the graph have the “con-
secutive ones” property, i.e., each set is an interval from the set of
integers. Our model is more general: we do not place such an as-
sumption on the set of conflict bits. Moreover, most treatments of
intersection digraphs consider loops on the vertices, whereas in the
thresholding model we have defined, whether or not donor i and
patient i are compatible is not considered. In addition, the directed
and bipartite intersection graph literature has focused on the case
that t = 0 (in our terminology). To the best of our knowledge, this
paper is the first treatment p-intersection digraphs, and certainly
their first real-world application.

3.1 Existence of Small Representations
It is natural to ask for what values of t and k can we select ver-

tices with bit vectors di and pi of length k such that f t
thresh can

create any graph of a specific size?
Formally, we say that G is (k, t)-representable (by feasibility

function f

t
thresh) if, for all i 2 V there exist di,pi 2 {0, 1}k such

that for all j1 2 V , j2 2 V \ {j1}, (j1, j2) 2 E if and only if
f

t
thresh(dj1 ,pj2

) = 1.
It is known [14] that any graph can be represented as an inter-

section graph with k  n

2
/4. In contrast, the next theorem shows

that, in our model, k  n suffices to represent any graph. It is
akin to a result on the term rank of the adjacency matrix of G [28,
Theorem 6.6].

THEOREM 3. Let G = (V,E) be a digraph on n vertices. Let
n1 be the number of vertices with outgoing edges, Let n2 be the
number of vertices with incoming edges, and n

0 = min{n1 +
1, n2 + 1, n}. Then G can be (n0

, 0)-represented.

PROOF. We first show that the graph can be (n1+1, 0)-represented.
Assume without loss of generality that vertices 1, . . . , n1 have out-
going edges. We show how to set di,pi 2 {0, 1}n1+1 for each
vertex i in V . To set the donor attributes, for each i 2 [n1], let
di be ei, the ith standard basis vector, i.e., the vector of length
n1 + 1 with a 1 in the ith coordinate and 0 everywhere else. For
i > n1, set di to be en1+1. For the patient attributes of vertex
j 2 [n], for each i 2 [n] such that (i, j) 2 E, set pji = 0, and
set pji = 1 otherwise. Note that if all the vertices have outgoing
edges, then n1 = n unit vectors suffice. A similar approach works
to (min{n, n2 + 1}, 0)-represent G, by using the n2 unit vectors
as the patient vectors of those vertices with incoming edges, and (if
needed) one additional unit vector for any remaining vertices. In
both of these cases, hdi,pji = 0 if and only if (i, j) 2 E, which
represents G by f

0
thresh.

https://www.kidney.org/atoz/content/immuno


Theorem 3 implies that any graph is (n, 0)-representable. The
next theorem shows a matching lower bound. The same construc-
tion and bound also hold if loops are considered [36].

THEOREM 4. For any n � 3, there exists a graph on n vertices
that is not (k, 0)-representable for all k < n.

PROOF. Define G to be the digraph on n vertices, V = [n], with
an edge from vertex i, for each i 2 V , to every vertex except i� 1
(and itself), where vertex n is also referred to as vertex 0.

Assume that G is (k, 0)-representable, and consider vertex 1.
Since (1, n) /2 E, and (i, n) 2 E for all i /2 {1, n}, there exists a
conflict bit q1 2 Qd(1) \ Qp(n) such that q1 /2 Qp(V \ {1, n}).
More generally, there exists such a conflict bit qi for all i 2 V .

We claim that these conflict bits are all unique, which directly
implies that k � n. Indeed, otherwise we can assume that q1 = qi

for some i 6= 1 (without loss of generality, as the graph is symmet-
ric subject to cyclic permutations). But then (1, i�1) and (i, n) do
not appear as edges in G, which is not true for any i 2 V \{1}.

More generally, it is easy to see that any graph that is (k, 0)-
representable is also (k+ t, t)-representable for any t � 0. Indeed,
simply take the (k, 0)-representation of the graph, and append t

ones to every vector. Together with Theorem 3, this shows that any
graph is (n + t, t)-representable. However, the lower bound given
by Theorem 4 does not extend to t > 0. We conjecture that for any
n and t there exists a graph that can only be (k, t)-represented with
k = ⌦(n)—this remains an open question.

3.2 Computational Issues
Given any real compatibility graph with n vertices, we know by

Theorem 3 that we can (k, 0)-represent that graph for k = n. But,
in practice, how large of a k do we actually need?

Various problems related to intersection graphs are NP-complete
for general graphs [23, 28], but we work in a setting with addi-
tional structure. And while we do not show that finding a (k, t)-
representation is NP-hard, we do show that a slightly harder prob-
lem, which we refer to as (k, t)-REPRESENTATION WITH IGNORED
EDGES, is NP-hard. Given an input of a directed graph G =
(V,E), a subset F of

�
V
2

�
, and integers k � 1 and t � 0, this

problem asks whether there exist bit vectors di and pi of length k

for each i 2 V such that for any (i, j) 2 F , we have (i, j) 2 E if
and only if hdi,pji  t.

THEOREM 5. The (k, t)-REPRESENTATION WITH IGNORED EDGES
problem is NP-complete.

The theorem’s nontrivial proof is omitted due to lack of space.5

Here we give a proof sketch. One major idea is the construction
of a bit-grounding gadget Gk—a subgraph where the bits are set
uniquely (up to permutations) in any valid representation, and can
be used to set the bits in other vertices. The gadget has

�
k
2

�
ver-

tices; we prove that there is a unique (up to permutations) (k, 1)-
representation of Gk, where each donor vector has a unique pair of
ones, and similarly for each patient vector. Figure 5 shows G4.

Then, we prove NP-hardness by reduction from 3SAT. In the
constructed instance of our problem, we set the threshold to 1. The
crux of the reduction is to add a vertex for each clause in the given
3SAT formula, where in the patient vector, the bit corresponding
to each literal in the clause is set to 1. This can be done by con-
necting the vertex to the bit-grounding gadget. Moreover, there is
a special vertex that does not have outgoing edges to any of the
clause vertices. This means that it must have a 1 in a position that
5The complete proof is given in Appendix A.

corresponds to one of the literals in each clause. A different part of
the construction ensures that there is at most a single 1 in the two
positions corresponding to a variable and its negation. Therefore,
a valid assignment of the donor bits corresponds to a satisfying as-
signment for the 3SAT formula.

1

2

3

4

1

d1 : 1100
p1 : 1010

2

d2 : 1010
p2 : 1001

3
d3 : 1001
p3 : 0110

4

d4 : 0110
p4 : 0101

5

d5 : 0101
p5 : 0011

6
d6 : 0011
p6 : 1100

Figure 1: Gadget G4 with a subset of non-edges shown; all edges
between circle vertices (those in G

2
4) are also not in E.

4. COMPUTING SMALL REPRESENTATIONS
OF REAL KIDNEY EXCHANGE COM-
PATIBILITY GRAPHS

In this section, we test our hypothesis that real compatibility
graphs can be represented by a substantially smaller number of at-
tributes than required by the worst-case theoretical results of Sec-
tion 3. We begin by presenting general mathematical programming
techniques to determine, given k, t 2 Z, whether a specific graph
G = (V,E) is (k, t)-representable. We then show on real and gen-
erated compatibility graphs from the UNOS US-wide kidney ex-
change that small k suffices for (k, 0)-representation, and conclude
by exploring the allowance of greater thresholds t on match size.
We find even small thresholds t > 0 result in substantial societal
gain.6

4.1 Mathematical Programming Formulations
Implementation of f t

thresh can be written succinctly as a quadratically-
constrained discrete feasibility program (QCP) with 2k|V | binary
decision variables, given as M1 below.

hdi,pji  t 8(vi, vj) 2 E

hdi,pji � (t+ 1) 8(vi, vj) 62 E

di,pi 2 {0, 1}k 8vi 2 V

(M1)

The constraint matrix for this program is not positive semi-definite,
and thus the problem is not convex. Exploratory use of heuris-
tic search via state-of-the-art integer nonlinear solvers [7] resulted
in poor performance (in terms of runtime and solution quality) on
even small graphs. With that in mind, and motivated by the pres-
ence of substantially more mature integer linear program (ILP)
solvers, we linearize M1, presented as M2 below.

6All code for this section can be found at https://github.
com/JohnDickerson/KidneyExchange.

https://github.com/JohnDickerson/KidneyExchange
https://github.com/JohnDickerson/KidneyExchange


min
P

vi2V

P
vj 6=vi2V ⇠ij

s.t. d

q
i � c

q
ij ^ p

q
j � c

q
ij 8vi 6= vj 2 V, q 2 [k]

d

q
i + p

q
j  1 + c

q
ij 8vi 6= vj 2 V, q 2 [k]P

q c
q
ij  t+ (k � t)⇠ij 8(vi, vj) 2 EP
q c

q
ij � (t+ 1)⇠ij 8(vi, vj) 2 EP

q c
q
ij � t+ 1� k⇠ij 8(vi, vj) 62 EP

q c
q
ij  k � (k � t)⇠ij 8(vi, vj) 62 E

d

q
i , p

q
i 2 {0, 1} 8vi 2 V, q 2 [k]

c

q
ij , ⇠ij 2 {0, 1} 8vi 6= vj 2 V, q 2 [k]

(M2)

M2 generalizes M1; while M1 searches for a feasible solution to
the (k, t)-representation problem, M2 searches for the “best” (pos-
sibly partially-incorrect) solution by minimizing the total number
of edges that exist in the solution but not in the base graph G, or do
not exist in the solution but do in G. This flexibility may be desir-
able in practice to strike a tradeoff between small k and accuracy
of representation.

Interestingly, neither the fully general ILP nor its (smaller) in-
stantiations for the special cases of feasibility and/or threshold t =
0 were solvable by a leading commercial ILP solver [22] within 12
hours for even small graphs, primarily due to the model’s loose LP
relaxation. Indeed, the model we are solving is inherently logical,
which is known to cause such problems in traditional mathemati-
cal programming [21]. With that in mind, we note that the special
case of t = 0 can be represented compactly as a satisfiability (SAT)
problem in conjunctive normal form, given below as M3.

V

q2[k]
(¬dqi _ ¬pqj ) 8(vi, vj) 2 E

(z1ij _ z

2
ij _ . . . _ z

k
ij) ^V

q2[k]

h
(¬zqij _ d

q
i ) ^ (¬zqij _ p

q
j )
i

8(vi, vj) 62 E

(M3)

This formulation maintains two sets of clauses: the first set en-
forces no bit-wise conflicts for edges in the underlying graph, while
the second set enforces at least one conflict via k auxiliary variables
z

·
ij for each possible edge (vi, vj) 62 E. M3 was amenable to par-

allel SAT solving [5]. Next, we present results on real graphs using
this formulation.

4.2 (k, 0)-representations of Real Kidney Ex-
change Graphs

Can real kidney exchange graphs be represented by a small num-
ber of attributes? To answer that question, we begin by testing on
real match run data from the first two years of the United Network
for Organ Sharing (UNOS) kidney exchange, which now contains
143 transplant centers, that is, 60% of all transplant centers in the
US. We translate each compatibility graph into a CNF-SAT formu-
lation according to M3, and feed that into a SAT solver [5] with
access to 16GB of RAM, 4 cores, and 60 minutes of wall time.
(Timeouts are counted—conservatively against our paper’s qualita-
tive message—as negative answers.)

Figure 2 shows a classical phase transition from unsatisfiability
to satisfiability as k increases as a fraction of graph size, as well
as an associated substantial increase in computational intractability
centered around that phase transition. This phenomenon is com-
mon to many central problems in artificial intelligence [8, 20, 38].
Indeed, we see that substantially fewer than |V | attributes are re-
quired to represent real graphs; compare with the lower bound of
Theorem 4.

Figure 3 explores the minimum k required to represent each
graph as a function of |V |, compared against the theoretical up-
per bound of k = |V |. The shaded area represents those values of
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Figure 2: Classical hardness spike near the phase transition for
(k, 0)-representation on real UNOS compatibility graphs.

k where the SAT solver timed out; thus, the reported values of k
are a conservative upper bound on the required minimum, which is
still substantially lower than |V |.
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Figure 3: Comparison of number of bits (y-axis) required to (k, 0)-
represent real UNOS compatibility graphs of varying sizes (x-axis).
The theoretical bound of k = |V | is shown in red; it is substantially
higher than the conservative upper bound of k solved by our SAT
solver (upper dotted line).

4.3 Thresholding Effects on Matching Size
One motivation of this work is to provide a principled basis for

optimally “flipping bits” of participants (via, e.g., immunosuppre-
sion) in fielded kidney exchanges, in the hope that additional edges
in the compatibility graph will result in gains in the final algorith-
mic matchings. We now explore this line of reasoning—that is, in-
creasing the t in f

t
thresh instead of the k, which is now endogenous

to the underlying model—on realistic generated UNOS graphs of
varying sizes.

Figure 4 shows the effect on the percentage of patient-donor
pairs matched by 2- and 3-cycles as a global threshold t is raised
incrementally from t = 0 (the current status quo) to t = 5. In-
tuitively, larger compatibility graphs result in a higher fraction of
pairs being matched; however, a complementary approach—making



the graph denser via even small increases in t—also results in tremen-
dous efficiency gains of 3–4x (depending on |V |) over the baseline
for t = 1, and quickly increasing to all pairs being matched by
t = 5.
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Figure 4: Pairs matched (%, y-axis) in generated UNOS graphs of
varying sizes (lines), as t increases (x-axis).

We note that any optimal matching found after increasing a global
threshold t could also be created by paying to change at most t
bits per vertex in a graph; however, the practical selection of the
minimum-sized set of at most t bits per vertex such that the size
of the resulting optimal matching is equal to that found under the
global threshold of t is a difficult two-stage problem and is left as
future research. The large efficiency gains realized by moving from
f

0
thresh to even f

1
thresh motivate this direction of research.

5. CONCLUSIONS & FUTURE RESEARCH
Motivated by the increasing size of real-world kidney exchanges,

in this paper, we presented a compact approach to modeling kidney
exchange compatibility graphs. Our approach is intimately con-
nected to classical intersection graph theory, and can be viewed as
the first exploration and practical application of p-intersection di-
graphs. We gave necessary and sufficient conditions for losslessly
shrinking the representation of an arbitrary compatibility graph in
this model. Real compatibility graphs, however, are not arbitrary,
and are created from characteristics of the patients and donors; us-
ing real data from the UNOS US-wide kidney exchange, we showed
that using only a small number of attributes suffices to represent
real graphs. This observation is of potential practical importance;
if real graphs can be represented by a constant number of attributes,
then central NP-hard problems in general kidney exchange are
solvable in polynomial time.

This paper only addresses the representation of static compati-
bility graphs; in reality, exchanges are dynamic, with patients and
donors arriving and departing over time [37]. Extending the pro-
posed method to cover time-evolving graphs is of independent the-
oretical interest, but may also be useful in speeding up the (presently-
intractable) dynamic clearing problem [4, 10, 2, 11, 17]. Better ex-
act and approximate methods for computing (k, t)-representations
of graphs would likely be a prerequisite for that line of research.
Furthermore, adaptation of the theoretical results to alternate organ
models like lung [15, 24], liver [16], and multi-organ [12] exchange
would be of practical use.

Appendix A: Omitted Proofs
In this section, we provide the full proof of Theorem 5. Recall the
(k, t)-REPRESENTATION WITH IGNORED EDGES: given an input
of a directed graph G = (V,E), a subset F of E, and integers
k � 1 and t � 0, this problem asks whether there exist bit vectors
di and pi of length k for each i 2 V such that the {i, j} 2 F if
and only if hdi,pji  t.

Consider the gadget Gk defined as follows on a graph on
�
k
2

�
+k

vertices. Let G1
k be the graph defined in Theorem 4 on

�
k
2

�
vertices,

i.e., the complement of a directed cycle on this many vertices. As-
sociate with each vertex u 2 G

1
k a unique element from

�
[k]
2

�
(all

subsets of [k] of size 2). Let G2
k be an independent set of k vertices.

For each vertex i 2 G

2
k, i 2 [k], add an incoming edge into i from

u 2 G

2
k if and only if i 2 Su. Figure 5 shows G4.
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p1 : 1010
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p3 : 0110
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d4 : 0110
p4 : 0101

5

d5 : 0101
p5 : 0011

6
d6 : 0011
p6 : 1100

Figure 5: Gadget G4 with a subset of non-edges shown; all edges
between circle vertices (those in G

2
4) are also not in E.

Denote the donor neighborhood of i 2 V by Nd(i) = {j 2 V :
(i, j) 2 E, i 6= j}, i.e., the set of patients compatible with donor
i. Similarly, the patient neighborhood of j 2 V is Np(j) = {i 2
V : {i, j} 2 E, i 6= j}.

LEMMA 1. There is a unique (up to permutations) (k, 1)-representation
of Gk.

PROOF. First consider G1
k. For all u 2 V (G1

k), since {u, u �
1} /2 E(G1

k), and the compatibility function is f

1
thresh, there ex-

ist two distinct conflict bits q

u
1 and q

u
2 in Qd(u) \ Qp(u � 1).

Moreover, for any u, v distinct, {qu1 , qu2 } 6= {qv1 , qv2}. Otherwise,
{qu1 , qu2 } ✓ Qp(v�1) and {qv1 , qv2} ✓ Qp(u�1), but at least one
of the edges {u, v � 1} or {v, u� 1} exists in G

1
k.

In addition, |Qd(u)| = 2 for all u 2 V (G1
k). Suppose not,

and there exists a third distinct (from q

u
1 and q

u
2 ) conflict bit qu3

in Qd(u). As the number of vertices is
�
k
2

�
, there exists a vertex

v1 with {qv11 , q

v1
2 } = {qu1 , qu3 }, and a (different) vertex v2 with

{qv21 , q

v2
2 } = {qu2 , qu3 }. Then {u, v1�1} and {u, v2�1} are both

not in E(G1
k). However, u has edges to all vertices except itself

and u�1, which is a contradiction, as u, v1, and v2 are all distinct.
From this, it also follows that |Qp(u)| = 2.

We have thus shown that every vertex u 2 G

1
k has exactly two

bits set to one in its donor attribute vector, with a unique pair of
bits per vertex, and Qd(u) = Qp(u � 1). However, without more
structure, it is not possible to tell in which donor vectors a particular
conflict bit appears. The additional graph G

2
k allows us to identify

this, up to permutations.



Since there are no outgoing edges from any of the vertices in G

2
k,

and every pair of bits in
�
[k]
2

�
appears in exactly one patient vector

of a vertex in G

1
k, each donor vector in G

2
k must be the all-ones

vector of length k.
Consider vertex i 2 [k] in G

2
k. It has an incoming edge from

each vertex u 2 V (G1
k) such that i 2 Su and it is missing the�

k�1
2

�
other possible incoming edges from G

1
k (note that the label-

ing of the vertices, as well as the choices of the sets Su, are made
without any knowledge of the bit-vectors associated with the ver-
tices). We next show that

��\u2Np(i)Qd(u)
�� = 1. That this quantity

is at most 1 is clear, as Qd(u) and Qd(v) intersect in at most one
conflict bit for all u, v 2 V (G1

k), u 6= v. If this quantity were
0, then for some u, v 2 Np(i), Qd(u) \ Qd(v) = ;. But then
at least two zeroes would appear in Qp(i), which is a contradic-
tion as it implies that i would have more than k incoming edges.
Thus, the patient vector pi for i 2 V (G2

k) has exactly one zero and
ones elsewhere. Moreover, since Np(i) 6= Np(j) for any distinct
i, j 2 [k], it follows that pi 6= pj , so each patient vector is distinct
and the position of its only zero is unique.

LEMMA 2. Consider a digraph G having Gk as a subgraph
and an additional vertex x /2 V (Gk). We use the compatibil-
ity function f

1
thresh and seek to find a (k, 1)-representation for the

induced subgraph G[V (Gk) [ {x}]. Let U ✓ V (G1
k) having

that property that if v 2 V (G1
k) with Qd(v) ✓ [u2UQd(u),

then v 2 U . Let U

0 = {u 2 V (G1
k) : u + 1 2 U}. Let

Q = [u2UQd(u).
If Np(x) = V (Gk

1)\U , then Qp(x) = Q. If Nd(x) = V (Gk
1)\

U

0, then Qd(x) = Q.

PROOF. We use the fact that there are exactly two bits set to
one in the donor and patient vectors of each vertex in Gk in any
(k, 1)-representation. For the first statement, since x has no edge
from u 2 U , Qp(x) ◆ Qd(u). Thus Qp(x) ◆ Q. Now let
v 2 V (G1

k)\U and qv 2 Qd(v)\Q. If qv 2 Qp(x), then for each
q 2 Q, there exists a vertex w in G

1
k with Qd(w) = {q, qv}, so

that {w, x} would also not be an edge of G, a contradiction. Hence,
Qp(x) = Q. The second statement follows analogously.

THEOREM 5. The (k, t)-REPRESENTATION WITH IGNORED EDGES
problem is NP-complete.

PROOF. Consider a 3SAT formula on n variables and with m

clauses. Set k = 2n+2, and build the following graph on 2+n+
m +

�
k
2

�
+ k vertices. The first two vertices are labeled v and u.

Then there is a vertex vi for each variable i 2 [n], a vertex c for
each clause c 2 [m]. Call the subgraph induced by these 2+n+m

vertices G0. The last vertices come from the gadget Gk.
The vertices in G

2
k ground the k bits used in each donor and pa-

tient vector.. We think of the k bits, in order, as corresponding to the
n positive literals, then their n negations, followed by two “extra”
bits. Then the index of literal xi will be i, and the index of literal x̄i

will be n+ i. For i and j distinct in V (G2
k), |Np(i) \Np(j)| = 1

within Gk. Denote this vertex of G1
k by v(i, j), and without loss of

generality we can assume that Qd(v(i, j)) = {i, j}.
The edges among vertices in the induced subgraph Gk are al-

ready defined; we define (a subset) of the rest of the edges. To-
gether, these comprise precisely the subset F of the edges and non-
edges specified as an input the instance we are creating of (k, t)-
REPRESENTATION WITH IGNORED EDGES.

Vertex v has no incoming edges, and the only outgoing edges
from v to V (G0) are to every variable vertex vi, i 2 [n]. The
rest of the vertices that are not in Gk have no outgoing edges at
all, to either V (G0) or V (Gk), and the only incoming edges are
from vertices of G1

k. Vertex u has an incoming edge from every

vertex of G1
k except v(2n + 1, 2n + 2). For each variable vertex

vi, i 2 [n], it has an incoming edge from every vertex in V (G1
k)

except v(i, n+ i). For each clause c 2 [m], let {c1, c2, c3} be the
indices of the three literals that appear in c. Let C ⇢ V (G1

k) be
{v(c1, c2), v(c1, c3), v(c2, c3), v(c1, k), v(c2, k), v(c3, k)}. Then
the vertex corresponding to c has an incoming edge from every
vertex in V (G1

k) \ C.
Every vertex of V (G0) except for v will have a donor vector

with every bit set to one because there are no outgoing edges to any
vertex of G

1
k, and v will have an all-ones patient vector because

it has no incoming edges from G

1
k. By Lemma 2, in any (k, 1)-

representation of G, vertex u will have Qp(u) = {2n+1, 2n+2}.
Variable vertex vi, i 2 [n], will have Qp(vi) = {i, n+ i}. Clause
vertex c 2 [m] will have Qp(c) = {c1, c2, c3, 2n+ 2}.

Since the graph does not have an edge from v to u, {2n+1, 2n+
2} ✓ Qd(v) (these are the only two conflict bits in Qp(u) and
the threshold is 1). Since the graph has an edge from v to each
variable vertex vi, i 2 [n], Qd(v) must contain at most one of the
indices corresponding to the variable or its negation (there are no
conflicts from the extra bits, which are set to 0 in the patient vector
of vi). Since the graph does not have an edge from v to any of the
clause vertices, it has to have at least one conflict bit in a position
corresponding to one of the three literals in the clause (the other
conflict comes from the extra bit 2n+ 2).

Thus, finding a suitable (k, 1)-representation that satisfies the
adjacencies of edges that appear in F would involve finding an ap-
propriate set Qd(v), which we have shown corresponds to choosing
at most one value for each xi, as well as choosing at least one lit-
eral that appears in each clause. This is the same as the problem of
finding a satisfying formula for the initial instance of 3SAT.

As an example, consider the 3SAT formula x1_x̄2_x3. Figure 6
shows the most relevant part of the graph used in the reduction. One
possible (k, 1)-representation may have Qd(v) = {1, 7, 8}, indi-
cating x1 = 1 and the rest of the variables are arbitrary. Another
example of a possible representation is Qd(v) = {1, 3, 5, 7, 8},
meaning x1 = 1, x2 = 0 (index 5 appears), and x3 = 1.

v

c

u

v1

v2

v3

v(x1, x3) 10100000

v(x1, x̄2) 10001000

v(x3, x̄2) 00101000

v(x1, 8) 10000001

v(x3, 8) 00100001

v(x̄2, 8) 00001001

v(x1, x̄1) 10010000

v(x2, x̄2) 01001000

v(x3, x̄3) 00100100

v(7, 8) 00000011

Figure 6: Example of 3SAT reduction to (k, t)-representation.



REFERENCES
[1] D. Abraham, A. Blum, and T. Sandholm. Clearing

algorithms for barter exchange markets: Enabling nationwide
kidney exchanges. In Proceedings of the ACM Conference on
Electronic Commerce (EC), pages 295–304, 2007.

[2] R. Anderson. Stochastic models and data driven simulations
for healthcare operations. PhD thesis, Massachusetts
Institute of Technology, 2014.

[3] R. Anderson, I. Ashlagi, D. Gamarnik, and A. E. Roth.
Finding long chains in kidney exchange using the traveling
salesman problem. Proceedings of the National Academy of
Sciences, 112(3):663–668, 2015.

[4] P. Awasthi and T. Sandholm. Online stochastic optimization
in the large: Application to kidney exchange. In Proceedings
of the 21st International Joint Conference on Artificial
Intelligence (IJCAI), pages 405–411, 2009.

[5] A. Biere. Yet another local search solver and lingeling and
friends entering the SAT Competition 2014. SAT
Competition, 2014:2, 2014.

[6] P. Biró, D. F. Manlove, and R. Rizzi. Maximum weight cycle
packing in directed graphs, with application to kidney
exchange programs. Discrete Mathematics, Algorithms and
Applications, 1(04):499–517, 2009.

[7] P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E.
Grossmann, C. D. Laird, J. Lee, A. Lodi, F. Margot,
N. Sawaya, et al. An algorithmic framework for convex
mixed integer nonlinear programs. Discrete Optimization,
5(2):186–204, 2008.

[8] P. Cheeseman, B. Kanefsky, and W. Taylor. Where the really
hard problems are. In Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence
(IJCAI), pages 331–337, Sydney, Australia, 1991.

[9] M. S. Chung and D. B. West. The p-intersection number of a
complete bipartite graph and orthogonal double coverings of
a clique. Combinatorica, 14(4):453–461, 1994.

[10] J. P. Dickerson, A. D. Procaccia, and T. Sandholm. Dynamic
matching via weighted myopia with application to kidney
exchange. In AAAI Conference on Artificial Intelligence
(AAAI), pages 1340–1346, 2012.

[11] J. P. Dickerson and T. Sandholm. FutureMatch: Combining
human value judgments and machine learning to match in
dynamic environments. In AAAI Conference on Artificial
Intelligence (AAAI), pages 622–628, 2015.

[12] J. P. Dickerson and T. Sandholm. Multi-organ exchange: The
whole is greater than the sum of its parts. Journal of
Artificial Intelligence Research, 2016. To appear.

[13] N. Eaton, R. J. Gould, and V. Rödl. On p-intersection
representations. J. Graph Theory, 21(4):377–392, 1996.
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ABSTRACT
Iterative voting is a social choice mechanism whereby voters
are allowed to strategically change their stated preferences
as the vote progresses, until an equilibrium is reached; at this
point, no voter can make a beneficial strategic change. We
study iterative voting for several common voting rules and
show that, for these rules, such an equilibrium may never
be reached. We also consider several variations of iterative
voting (restrictions on the allowable changes to votes), and
show that with these variations equilibrium may also not be
reached. Finally, we do an empirical analysis of the quality
of candidates elected through iterative voting.

1. INTRODUCTION
The topic of voting, that is, how to aggregate diverse in-

dividual preferences into a collective decision, is of great
importance in many automated agent scenarios; it has thus
been the topic of much research in multiagent systems. One
innovative voting model that was recently proposed is that
of iterative voting [12]. Whereas classic voting rules usually
consist of a single round of ballot submission and announce-
ment of the winner, in iterative voting there can be many
such rounds. After each iteration, if any voter wishes to
change their vote they may do so, and potentially a new
winner replaces the previous one (when multiple such voters
exist, an arbitrary voter is chosen). The process terminates
when no voter wishes to change their vote. Iterative voting
thus embraces the inevitable manipulability of voting shown
in the Gibbard-Satterthwaite theorem [20, 6], and considers
agents’ uniform ability to vote strategically as a collective
opportunity.

Besides being an intriguing method for reaching consen-
sus, iterative voting has been proposed as a formal solution
concept for voting games. Standard Nash equilibria are of
limited usefulness in voting games where the group outcome
is generally robust to changes in any single voter’s action.
The set of iterative voting equilibria, however, is a subset
of Nash equilibria, and in particular those iterative voting
equilibria reachable from the truthful profile could be con-
sidered a more natural (or meaningful) solution concept.

The most salient questions regarding iterative voting thus
have two interpretations. Regarding iterative voting as a
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method for reaching an outcome, we ask whether the pro-
cess terminates; if so, with what complexity; and does it
arrive at “good” outcomes. Regarding iterative voting as a
solution concept, we must explore the existence of solutions;
the equilibria computation; and notions of price of stabil-
ity/anarchy.

Most previous research on iterative voting has focused
on plurality, with several extensions to other scoring rules.
However, in this work we look into previously unexplored
voting rules which are not scoring rules—Maximin, Copeland,
Bucklin, STV, Second Order Copeland (SOC), and Ranked
Pairs. In the process of investigating these voting rules,
we design dynamics under which the iterative voting might
evolve. While we show that convergence is not guaranteed,
we proceed to analyze the outcomes of the iterative dynamic
empirically, showing that cycles are not very common, and
moreover, the outcomes are generally very good.

2. RELATED LITERATURE
There has been extensive research on solution concepts of

voting games, and an overview of the research can be seen
in Meir et al. [11]. Due to space constraints, we focus in this
section on the iterative model which we extend.

Our model of iterative voting was initiated by Meir et
al. [12], who showed that Plurality voting converges under a
natural restricted best-response dynamic and linear ordered
tie-breaking (a dynamic refined in [10]). Lev and Rosen-
schein [8] (and in parallel [19]) later showed that Veto, with
a similarly natural restricted best-response dynamic, also
converges. However, [8] and further work showed that no
other scoring rules converge for best-response dynamics, as
well as showing that allowing non-linear tie-breaking will
result in Maximin not converging (though they showed no
result on Maximin with linear tie-breaking).

Reijngoud and Endriss [18] added an epistemic element by
varying the amount of information revealed at each stage,
and also showed that any scoring rule converges under the
k-pragmatism dynamic. Grandi et al. [7] showed that, for
two additional restrictive dynamics, scoring rules (as well as
Copeland and Maximin), converge, and Loreggia [9] added
another very restrictive dynamic, showing that Copeland
and Maximin converge under it. Obraztsova et al. [16] ab-
stracted these ideas and put forth two theoretical properties
which su�ce to guarantee convergence. Not in connection to
iterative voting, Obraztsova and Elkind [13] proposed sev-
eral dynamics, of which we adopt, for example, the Kendall-
Tau dynamic.

Research examining the properties of iterative voting oc-



curred in parallel. Meir et al. [11] showed that a generaliza-
tion of iterative voting, where voters act under uncertainty,
also converges for Plurality. [17, 14] considered questions of
computational complexity related to iterative voting, with
and without assumptions about “truth bias” and “lazy bias”
on the part of voters.

Brânzei et al. [3] examined the quality of iterative voting,
via the notion of the dynamic price of anarchy. They showed
lower bounds for Plurality, Veto, and Borda, and a tight up-
per bound for Plurality. Additional work on the quality of
iterative voting includes that of [11, 18, 7] (all mentioned
in other contexts, above) who showed through simulations
some improvements in the outcome of elections, in their vari-
ous versions of iterative voting. However, the closest work in
its pattern of simulations and quality measures is Thompson
et al. [21], which analyzed truth-biased equilibria, without
any assumption regarding their dynamics.

3. PRELIMINARIES
Our setting will be the standard voting model that in-

cludes a set of voters V, |V | = n, and a set of candidates
C, |C| = m. Each voter i has a strict preference order �i

over C, that is, a complete, reflexive, transitive, and anti-
symmetric binary relation over C. Denote the set of all such
preference orders as P(C). A profile

~� = (�1,�2, ...,�n) 2 P(C)n

is a vector of n preference orders, one for each voter. We
denote by

~��i = (�1, ...,�i�1,�i+1, . . . ,�n) 2 P(C)n�1

the profile of the voters excluding i and (~��i,�i) = ~�. We
shall denote the truthful preferences of voters as ~tr = (�tr

1

, . . . ,�tr
n ).

We model a collective decision through one of two func-
tions. A social welfare function is a function f : P(C)n !
P(C)\{;} and a voting rule is a function F : P(C)n !
2C\{;}. So, given a (not necessarily truthful) vector of pref-
erences, a social welfare function chooses a preference order
and a voting rule chooses a set of candidates. When a voting
rule is irresolute, and we would like a unique winner, we use
a tie breaking rule, a function t : 2C ! C. A linear-ordered
tie breaking rule is a rule that breaks ties according to a fixed
linear order. It will be without loss of generality throughout
this paper that the linear-ordered tie breaking rule we use
is the lexicographic tie breaking rule, where ties are broken
according to the lexicographic order of candidates’ names.

3.1 Voting Rules
We shall investigate the following voting rules:

Maximin For each pair of candidates c1, c2 let P (c1, c2) =
|{x 2 V |c1 �x c2}|. For each candidate c, let sc(c) =
min

c0 6=c2C
P (c, c0). The candidates with the maximum score,

argmax
c2C

sc(c), win.

Copeland Let P (c1, c2) = |{x 2 V |c1 �x c2}|, as above.
For ↵ 2 [�1, 1], let sc(c) = |{c0|P (c, c0) > n/2}| �
|{c0|P (c, c0) < n/2}|+↵ · |{c0|P (c, c0) = n/2}|, and the
candidates with the maximum score, argmax

c2C
sc(c),

win. (Generally ↵ = 0 is assumed).

Bucklin For each c 2 C, let
sc(c) = mink<m |{x 2 V |9c1, . . . cm�k s.t. c �x ci}| >
n/2. The winner is the candidate with the smallest
score, argmin

c2C
sc(c).

STV Under Single Transferable Voting (STV), the elec-
tion proceeds in rounds. In each round, the candidate
with the lowest plurality score is eliminated and any
voter voting for them transfers their vote to their next
ranked candidate. The last remaining candidate is the
winner.

SOC Second Order Copeland (SOC) chooses winners as in
Copeland, except that ties are broken according to the
score of defeated candidates. If sc(c) is the Copeland
score of c, then Second Order Copeland chooses c 2
argmax

c2C
sc(c) s.t.

P
sc(c0)

c0:P (c,c0)>n/2

is maximal.

Ranked Pairs (RP) Let P (c1, c2) = |{x 2 V |c1 �x c2}|,
as above. Let

O = (P (ci1,1 , ci1,2), P (ci2,1 , ci2,2), ..., P (ci(m2 ),1
, ci(m2 ),2

))

be the sorted list of pairs of candidates’ P-score such
that

P (cij,1 , cij,2) � P (cij+1,1 , cij+1,2).

If P (cij,1 , cij,2) = P (cij+1,1 , cij+1,2), then

P (cij,1 , cij,2) �O P (cij+1,1 , cij+1,2)

i↵ ij,1 < ij+1,1 or ij,1 = ij+1,1 and ij,2 < ij+1,2; i.e.,
break ties in order lexicographically (first candidate,
second candidate). A ranking is constructed by the
following algorithm. For j=0 to

�
m
2

�
fix cij,1 � cij,2

unless this contradicts a previous step (including by
transitivity). The candidate at the top of the con-
structed ranking is selected as the winner.

An interesting property of which we will make use regards
the Condorcet winner. A Condorcet winner is a candidate
who is preferred to each other candidate by more than half of
the voters; however, such a winner does not always exist. A
voting rule is Condorcet consistent if whenever there is such
a Condorcet winner, it is the election’s outcome. Among
the voting rules we discuss, Maximin, Copeland, SOC and
Ranked Pairs are Condorcet consistent, while Bucklin and
STV are not.

3.2 Dynamics
We will call a binary relation D ⇢ P(C)n ⇥ P(C)n a

dynamic. We call a (possibly finite) sequence of profiles
(~�1, ~�2, ...) 2 P(C)⇤ a profile sequence and a (possibly fi-
nite) sequence of voters (v1, v2, ...) 2 V ⇤ a voter sequence.
A profile sequence (~�1, ~�2, ...) for which ~�1 are the truthful
preferences, is called an initially truthful profile sequence.

We will say a profile sequence is valid for a dynamic D
if 8i(~�i, ~�i+1) 2 D. We will mainly be concerned with dy-
namics for which all elements di↵er in a single preference,
i.e.,

8[(~�(1)
, ~�(2)

) 2 D] 9i 2 V s.t. ~�(1)
�i = ~�(2)

�i .

In such a case, a profile sequence induces a voter sequence
(v1, v2, ...) where vi is the voter whose preference changed



at stage i. Likewise, a voter sequence defines a set of profile
sequences by which it is induced. A voter sequence will be
called valid if it is induced by some valid profile sequence.

The final element of a (finite) valid profile sequence
(~�1, ~�2, ..., ~�k) will be called an equilibrium if there is no
~�k0 such that (~�k, ~�k0) 2 D.
For a dynamic D and voting rule F with tie breaking rule

t, let I(D, Ft) = {s|s is a valid profile sequence for D(Ft)}.
We will say that iterative-F converges (or always converges)
under D if every element of I(D, Ft) is finite. Otherwise,
we will say that iterative-F under D cycles (or may cycle)
or does not converge (or may not converge). Notice that,
as defined, the semantics of convergence are asynchronous.
I(D, Ft) converges if every element is finite, and is not lim-
ited to, say, a “fair schedule of play.”

The dynamics we shall consider will be influenced by the
truthful preferences, i.e., a dynamic in which a voter’s vote
changed must have increased the utility of that vote. Two
main dynamics have been investigated (e.g., in Meir et al. [12]).
An ordered pair of profiles is in the better response dynamic
if the preferences of all voters but one are identical in the
two profiles, and the voter whose preference changes prefers
the outcome of the second profile to that of the first profile.
In game-theoretic terms, any time a single player can make
a better response to a given state, such a move is included

in the dynamic. Formally, for two profiles ~�(1)
, ~�(2)

and a

voting rule F, (~�(1)
, ~�(2)

) 2 BetterResponse i↵:

9i 2 V s.t. ~�(1)
�i = ~�(2)

�i and F (~�(2)
) �tr

i F (~�(1)
).

Such an i is called the manipulator, �(2)
i is called the new

vote, and �(1)
i is called the old vote. Notice that a stable

state under this dynamic is a Nash equilibrium.
Similarly, an ordered pair of profiles is in the best response

(BR) dynamic if the preferences of all voters but one are
identical; the voter whose preference changes prefers the out-
come of the second profile to that of the first profile (so it is
contained in the better response dynamic); and of all possi-
ble changes to his preferences, the outcome under the second
profile is preferred at least as much as the outcome under

any other possible profile. Formally, (~�(1)
, ~�(2)

) 2 BR i↵:

9i 2 V s.t. ~�(1)
�i = ~�(2)

�i and F (~�(2)
) �tr

i F (~�(1)
)

and

8 �002 P(C) s.t. (~�(1)
�i ,�

00) 6= ~�(2)
, F (~�(2)

) ⌫tr
i F (~�(1)

�i ,�
00).

The above description clearly defines a game form. The
set of voters is the set of players, the set of preferences is
the set of strategies available to each player, and the voting
rule determines the outcome of a strategy profile. Ordinal
utilities are given by true preference orders. An equilibrium
under Best Response (or Better Response) is a Nash equi-
librium.

4. DYNAMICS
The study of best response dynamics is prolific, but in the

iterative voting context, particular forms of best response
have been utilized in the convergence proofs of both plural-
ity [12] and veto [8]. For non-scoring rules, however, there
is no immediately clear choice of best response form (in-
deed, in some cases, like STV, it is NP-complete to calcu-
late what it is). We present here several dynamics that may

serve as natural heuristics for a potential voter. There have
been dynamics designed with the express purpose of ensur-
ing convergence, as in k-pragmatism, M1, and M2 [18, 7].
However, we propose the following as possibly more natural
correspondences to the strategic behavior of self-interested
agents.

TOP: This dynamic assigns the candidate which the voter
wishes to make a winner the top spot in the new preference
order. In many of the voting rules we consider (and any
weakly-monotone rule) this dynamic is a subset of the best-
response dynamic (i.e., TOP (P(C)) ⇢ BR(P(C))), and,
indeed, it generalizes the dynamic used in Meir et al. [12].

TB: This dynamic requires the new winner to be at the
top of the new ballot, and the previous winner to be at
the bottom. While in many scoring rules (e.g., plurality and
veto) this is a subset of best response moves (and generalizes
those used in Lev and Rosenschein [8]), this is not true in
general, and particularly in the voting rules we study in this
work.

KT: This dynamic restricts best response to those with
minimumKendall-Tau distance from the previous vote. That
is, among all possible moves whose outcome will be the most
preferred possible candidate, one with the minimal Kendall-
Tau distance1 from the current vote is chosen.

SWAP: This dynamic, inspired in part by notions from
the literature on bribery (see, e.g., [5, 4]), is quite restrictive.
It restricts manipulations to a single swap (called a ‘shift’ in
the bribery literature) or even a single adjacent swap (i.e.,
changing to a vote within Kendall-Tau distance of one from
the current vote; a ‘swap’ in the bribery nomenclature).

5. CONVERGENCE
In this section we consider the convergence of iterative

voting for several voting rules. We distinguish between the
first three, for which there exists a polynomial time algo-
rithm for a single voter to compute a best response manip-
ulation, and the last three for which such a computation is
NP-Complete [2, 1, 22]. In reversal of the common situation
in computational social choice, for iterative voting polyno-
mial manipulation is actually quite felicitous.

A note on reading the examples: each column represents
a profile of submitted ballots (beginning with the truthful
one). The final row in the column indicates the winner of
the profile. The i-th entry in a column represents voter i’s
submitted preferences, where, for example, ABC is to be
read A �i B �i C. Arrows highlight the changed prefer-
ence between two profiles at a given stage. The profile se-
quence formed by continual repetition of the indicated pro-
files thus forms an infinite element of I(D, Ft) and proves
non-convergence. Due to space constraints, we omit several
proofs and examples.

5.1 Maximin
Similar to plurality and veto, Maximin changes gradually.

The di↵erence in score between the previous winner and the
new one, when a single voter manipulates, can go up or down
by at most one point. One might thus expect there to be an
argument for convergence, similar to plurality/veto. But in
fact, convergence with Maximin turns out to be elusive even

1For a, b 2 P(C), the Kendall-Tau distance between them
is defined as dist(a, b) = |{i, j} 2 V |(i �a j and j �b

i) or (j �a i and i �b j)}|.



after major restrictions on the allowable moves.

Theorem 1. Maximin with linear order tie-breaking does
not converge for the dynamics BR, TOP, TB, KT and SWAP.

Proof. For BR, the example is:

BAC BAC // CBA CBA
⇧⇧

CAB // ABC ABC // CAB

CAB CAB CAB CAB

BCA BCA BCA BCA

B A B C
For TOP, the example is:

CDAB CDAB // DABC DABC
⇤⇤

ACBD // ADBC ADBC // ACBD

BCDA BCDA BCDA BCDA

C A D A
For TB, the example is:

ACDBE // ACEBD ACEBD // ADEBC ADEBC
⇧⇧

DBCEA DBCEA // CBDEA CBDEA // DBCEA

EBDCA EBDCA EBDCA EBDCA EBDCA

D A C A D
For KT, the example is:
DBACE // BDCAE BDCAE BDCAE

oo

EDCAB EDCAB // DECAB DECAB

CEADB CEADB CEADB // EACBD

A B D A

DBCAE

//

DBCAE DBCAE

EDCAB EDCAB DECABoo

CEADB EACBDoo EACBD

C E D
And, finally, for SWAP, the example is:

CABD CABD CABD CABD // CADB CADB
��

BDCA BDCA BDCA BDCA BDCA BDCA

DBAC DBAC DBAC DBAC DBAC DBAC

DCBA DCBA // CDBA CDBA CDBA // DCBA

ABCD // ACBD ACBD // ABCD ABCD ABCD

B A C B A D
Although the changes to the winner’s score are as grad-

ual in Maximin as in plurality and veto, the exponential
blowup in strategy space seems to make convergence harder.
Whereas in plurality and veto, a voter’s ballot reduces to a
single candidate, in Maximin a ballot depends on the entire
ranking.

5.2 Copeland
Theorem 2. Copeland with linear order tie-breaking does

not converge for the dynamics BR, TOP, TB, KT and SWAP.
This holds for Copeland↵ for any ↵.

Proof. Since the number of voters in all our examples is
odd, they hold for Copeland↵ for any ↵.

The example for BR:

BDCA BCDA // DBCA DBCA
⇤⇤

CDAB // DABC DABC // CDAB

ABCD ABCD ABCD ABCD

B A D C
The example for the TOP dynamic:

DABC DABC // ACBD ACBD
⇤⇤

BDAC // BACD BACD // BDAC

CDBA CDBA CDBA CDBA

D B A B
Using the TB dynamic and moving the desired winner to

the top and the current undesired winner to the bottom does
not su�ce to avoid cycles:

ACB ACB // ABC ABC
⇧⇧

BCA // CBA CBA // BCA

A C A B
The exact same example as TB also serves to show re-

stricting best response by minimum Kendall-Tau distance
does not su�ce to avoid cycles.

Finally, restrictions to a single adjacent swap does not
su�ce:

BCA BCA // CBA CBA
⇧⇧

ABC // ACB ACB // ABC

B A C A

5.3 Bucklin

Theorem 3. Bucklin with linear order tie-breaking does
not converge for the dynamics BR, TOP, TB, KT and SWAP.

Proof. The example for BR:

ACB ACB // CBA CBA
⇧⇧

BAC // CBA CBA // BAC

ABC ABC ABC ABC

CBA CBA CBA CBA

A B C B
The example for TOP:

BACD BACD // CBAD CBAD // ADBC ADBC
��

DBAC // DCAB DCAB // DABC DABC // DBAC

BDAC BDAC BDAC BDAC BDAC BDAC

CDBA CDBA CDBA CDBA CDBA CDBA

ADCB ADCB ADCB ADCB ADCB ADCB

B D C D A D
The example for the TB dynamic:



ADBC ADBC // ACBD ACBD
⇤⇤

CBDA // DBCA DBCA // CBDA

CADB CADB CADB CADB

DBAC DBAC DBAC DBAC

A D A C
The example for the KT dynamic:

ABCD ABCD // ACBD ACBD
⇤⇤

DCBA // DBCA DBCA // DCBA

CBAD CBAD CBAD CBAD

DACB DACB DACB DACB

A B A C
The example for the SWAP dynamic:

DCBA DCBA // DBCA DBCA
⇤⇤

ABCD // ACBD ACBD // ABCD

CDAB CDAB CDAB CDAB

BDAC BDAC BDAC BDAC

D C D B

5.4 STV

Theorem 4. STV with linear order tie-breaking does not
converge for the dynamics BR, TOP, TB, KT and SWAP.

Proof. The example for the BR dynamic:

BCDA // DCAB DCAB // BADC BADC
⌃⌃

ADBC ADBC // DBCA DBCA // ADBC

CDAB CDAB CDAB CDAB CDAB

A C D B A
The example for the TOP dynamic:

CDAB // DABC DABC // CABD CABD
⌃⌃

ABCD ABCD // BACD BACD // ABCD

DACB DACB DACB DACB DACB

CBDA CBDA CBDA CBDA CBDA

A D B C A
The example for the TB dynamic:

CABD CABD // ACDB ACDB
⇤⇤

DBCA // BADC BADC // DBCA

DBCA DBCA DBCA DBCA

CDAB CDAB CDAB CDAB

C B A D
The example for the KT dynamic:

DBAC DBAC // BDAC BDAC
⇤⇤

ACBD // CABD CABD // ACBD

CDBA CDBA CDBA CDBA

DABC DABC DABC DABC

D C B A
The example for the SWAP dynamic:

ADCB ADCB // DACB DACB
⇤⇤

DBAC // BDAC BDAC // DBAC

CBDA CBDA CBDA CBDA

A B C D

5.5 Second Order Copeland

Theorem 5. SOC with linear order tie-breaking does not
converge for the dynamics BR, TOP, TB, KT and SWAP.

Proof. The example for BR is:

BCDA BCDA // CBDA CBDA
⇤⇤

DABC // DACB DACB // DABC

B D C A
The examples for the other dynamics are the same as those

for Copeland.

5.6 Ranked Pairs
In Ranked Pairs, as in other voting rules which output

a complete ranking, a stronger convergence property could
be defined for the entire ranking, but convergence is elusive
even for just the top element of the ranking (the winner of
Ranked Pairs).

Theorem 6. Ranked pairs with linear order tie-breaking
does not converge for the dynamics BR, TOP, TB, KT and
SWAP.

Proof. The example for the BR dynamic:

BDCA BDCA // DACB DACB // CBAD CBAD
��

CBAD // CDAB CDAB // BACD BACD // CDAB

B C D A B C
The example for the TOP dynamic:

ADBC ADBC // ACBD ACBD
⇤⇤

CDAB // DABC DABC // CDAB

BCDA BCDA BCDA BCDA

A D A C
The example for the TB dynamic:

DABEC DABEC // BADEC BADEC
⇥⇥

CADEB // CABED CABED // CADEB

ECADB ECADB ECADB ECADB

BDECA BDECA BDECA BDECA

D C B C



The example for the KT dynamic:

DABC DABC DABC DABC // ADBC ADBC
��

BDCA BDCA // BDAC BDAC BDAC // BDCA

CABD // CADB CADB // CABD CABD CABD

CBDA CBDA CBDA CBDA CBDA CBDA

B C D B A C
The above example, is also for the SWAP dynamic, as all

changes are of Kendall-Tau distance of one.

6. EMPIRICAL ANALYSIS OF OUTCOMES
We now consider the behavior of iterative voting, and the

quality of its outcomes, through the results of empirical sim-
ulations. Assessing the quality of a voting method can be
subtle. One general methodology is the a posteriori ap-
proach, to judge a rule by the quality of its outcome. Yet
there is no definitive agreed-upon measure of quality of vot-
ing rules. Moreover, some voting rules have been designed
with a particular measure of quality in mind, such as Max-
imin, ensuring the core number of supporters a candidate
has, against any other one, is maximal.

Another compelling criterion is Condorcet e�ciency. If a
candidate is preferred to each other candidate by a majority
of voters, there is reason to think it should be the winner.
Thus it could be interesting to consider how often, for a
given distribution of voter preferences, a rule chooses the
Condorcet winner.

Furthermore, we wish to estimate social welfare. Social
welfare’s utility is limited in voting settings as we gener-
ally do not have the cardinal utility functions of our voters.
However, as has been suggested in previous research, we can
use the Borda score on the truthful preferences, in which the
utility of each voter of an outcome is m� i, if the winner is
candidate c 2 C which the voter ranks in place i.

As noted before, among the rules we considered in the
previous section, Maximin, Copeland, Ranked Pairs, and
Second Order Copeland are all Condorcet consistent. For
these, therefore, we can only consider how much worse iter-
ative voting can be than truthful voting (though, of course,
we know voters do not actually always vote truthfully, so
it is not as if iterative plurality is necessarily worse than a
non-iterative model). For both STV and Bucklin—which
are not Condorcet consistent—there is a possibility that it-
erative voting could have greater Condorcet e�ciency than
static voting. And for all rules, we can compare the Borda
score of the truthful winner with the (truthful) Borda score
of the equilibrium winner.

Our method is influenced by those of [21, 18, 7, 11]. Un-
like [18, 7], however, which study iterative voting under re-
strictive dynamics (M1, M2, and k-pragmatism), we choose
to analyze iterative voting under best-response dynamics.
Unrestricted best-response is both computationally taxing
as well as possibly cyclical. Nevertheless, as the most basic
form of iterative voting, it seems to us to be of the greatest
interest.

Our findings are the results of simulations of iterative vot-
ing for the six rules we have studied. Simulations were run
for each rule twice, once with 10 voters and once with 25.
Both runs had 4 candidates. For each set of parameters,

10,000 initial (truthful) profiles were sampled uniformly at
random. Each profile evolved, for each voting rule, under
best response dynamics and was run to completion (or detec-
tion of a cycle) 20 times. In keeping with the asynchronous
conception of iterative voting, each of the 20 executions were
developed at each step by uniformly sampling a voter with
a potential move and uniformly sampling a move from all of
that voter’s possible best-response moves.

We begin with statistics regarding the behavior of best re-
sponse in the iterative version of the various rules. Table 1
shows the average number of steps in each of the 200,000
paths considered per setting. Many of the 10,000 initial pro-
files were Nash equilibria, and so non-manipulable. There-
fore, a significant fraction of the paths were of length zero.
For convenience, we also include the average path length
among non-zero-length paths. Finally, we show the maxi-
mum length among the 200,000 paths.

Voting rule Avg.

length

Corrected

avg.

length

Max

length

Nash

equilibrium

share in

truthful

prefs

Maximin 10 2.29 8.66 143 73.5%
Maximin 25 4.97 25.19 325 80.24%
Copeland 10 6.42 19.42 269 66.55%
Copeland 25 5.51 24.69 504 77.65%
Bucklin 10 3.24 7.32 232 55.55%
Bucklin 25 4.67 11.66 301 59.94%
STV 10 0.94 4.46 97 78.84%
STV 25 1.65 8.00 182 79.32%
SOC 10 5.55 17.38 254 67.76%
SOC 25 5.66 26.00 306 78.18%
RP 10 2.13 8.55 131 75.03%
RP 25 4.18 22.83 376 81.7%

Table 1: Path Lengths

Unsurprisingly, as the number of voters grows, the prob-
ability of sampling a Nash equilibrium grows as there is
a larger probability of the di↵erence between the winner
and the runner up being large enough so a single voter
cannot change it (using similar reasoning, increasing the
number of candidates would have increased the chances of
strategic moves). On the other hand, the path lengths with
more voters are longer than those with fewer voters. In the
(rarer) case that an elections is close, more voters can partic-
ipate in the strategic process. Copeland (and Second Order
Copeland) tended to have longer paths and STV had espe-
cially short paths, but in general the NP-Complete rules did
not have shorter paths than polynomial rules.

Before we begin analyzing the quality of the outcomes, we
remark on an important point of relevance to the previous
section.

For all of the rules, cycles occur quite rarely—the highest
share of cycles was 0.57%, though most were well under
0.1%; see Figure 1. So although we have shown that all
these rules can cycle, the frequency with which they do is
very low. Copeland (and SOC), which exhibited the greatest
(non-cyclic) path length, also tends to cycle more often than
other rules, but it too cycles quite infrequently. STV, which
has especially short paths, also cycles less frequently, but
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Figure 1: Out of all iterative processes (i.e., not in-
cluding cases where the truthful preferences were a
Nash equilibrium), the share of outcomes which de-
creased the Borda score, increased it, truthful out-
come (of each voting rule), and the share of runs
which ended in a cycle.

in general there does not appear to be a distinction in the
number of cycles between NP-Complete rules and P rules.

For more voters, there are many fewer cycles, apparently
because of the sparsity of cycles and uniform choice of paths.

The rarity of cycles suggest that perhaps iterative voting
could be used even with these rules and best response dy-
namics. In the rare case of a cycle it could be detected and
turned over to some cycle-breaking rule, e.g., either run-
ning the election again or deciding amongst the di↵erent
outcomes in the cycle.

Turning to assess the observed outcomes of iterative vot-
ing, we first note that quite often iterative voting leads to
the original outcome. Many such instances are the result
of original profiles which are non-manipulable. But many
are also the result of manipulations, whose equilibrium re-
verted to the original winner. Of the manipulable profiles
(see Figure 1), the non-Condorcet consistent rules (Bucklin
and STV) behave di↵erently than the others—both of them
have fewer than 50% of the outcomes truthful, but their ratio
increases as voters grow, unlike the rest of the voting rules.
Copeland exhibited the most consistency when increasing
the number of voters.

Next we assess the change in Borda score (our proxy for
social welfare) and Condorcet e�ciency. As can be seen in
Figure 1, once again Bucklin and STV behave significantly
di↵erently than other voting rules—for them, a significant
number of outcomes increase the Borda score as compared to
the truthful outcome. This is almost always not the case for
the Condorcet consistent rules. However, in all Condorcet
consistent rules except Maximin the share of outcomes which
decreased the Borda score was close to the share of those that
increased it. In all of them but Ranked Pairs this di↵erence
was decreased further when the number of voters increased.
In all Condorcet consistent voting rules the average Borda
score of the outcome was below that of the truthful outcome,
but only slightly so—less than 1 point di↵erence. Contrary
to that, both Bucklin and STV’s average Borda score was

above their truthful one, and for Bucklin significantly so
(above a 2 point di↵erence).

With regard to Condorcet e�ciency, we consider, for each
of the 10,000 profiles, whether a Condorcet Winner existed
in the original profile, whether it is selected by the voting
rule, and whether it is was the outcome in a reached equilib-
rium. The latter is presented in Table 2 in terms of e�ciency
(out of 10,000) after aggregating equilibria over non-cycling
paths.

Voting rule # of Profiles Share of outcomes
with a Condorcet with Condorcet

winner winner
Maximin 10 4764 0.47
Maximin 25 8413 0.82
Copeland 10 4764 0.47
Copeland 25 8413 0.81
Bucklin 10 3717 0.45
Bucklin 25 4461 0.58
STV 10 4610 0.47
STV 25 7795 0.83
SOC 10 4764 0.47
SOC 25 8413 0.81
RP 10 4764 0.47
RP 25 8413 0.82

Table 2: Comparing Condorcet E�ciency (of 10,000
profiles)

Of the 10,000 profiles sampled with n=10, there were
4764 for which a Condorcet Winner existed; among those
with n=25, there were 8413 with a Condorcet Winner. As
mentioned, Maximin, Copeland, Ranked Pairs, and Second
Order Copeland are Condorcet-consistent, so e�ciency has
only one direction to move (downward). Yet it does so by
very little, although slightly more when there are more vot-
ers.

Of the two rules that are not Condorcet consistent, Buck-
lin and STV improve their e�ciency under iterative voting.
These two rules also fared well under Borda criteria, sug-
gesting that iterative Bucklin and iterative STV could be
considered improvements on their static counterparts. In-
terestingly, Bucklin is also the most manipulable among the
rules (it contained the fewest number of paths of size zero).

7. CONCLUSION AND DISCUSSION
In this work we have continued the exploration of iterative

voting. We have done so in two dimensions. In the first,
we expanded the set of dynamics to include some which
reflect strategic behavior, but restrict best response in a,
to a certain extent, natural way—whether by constraining
the placement of a↵ected candidates, or by prioritizing mi-
nor ballot changes. In the second dimension, we have ven-
tured beyond scoring rules, and have shown that for Max-
imin, Copeland, Bucklin, STV, Second Order Copeland, and
Ranked Pairs, iterative voting under best response dynamics
does not always converge. Even after restricting the dynam-
ics to allow voters only limited changes to their ballots they
still do not always converge.

On the other hand, we have shown empirically that cycles
seem to occur rather infrequently with all of these rules. Fur-
thermore, we have shown that iterative voting, according to



certain common criteria, does not perform much worse, and
sometimes does better, than non-iterative voting. Notably,
in non-Condorcet consistent rules—Bucklin and STV—the
winners tend to improve significantly through iterative vot-
ing with regard to both their Borda score and Condorcet
e�ciency.

Continuation of this line of work would include analysis of
convergence conditions for more voting rules and additional
dynamics, with an aim towards discovering convergence dy-
namics, or establishing broader impossibility results. The
empirical aspect of this work would benefit from expand-
ing the analysis, for example by analyzing more distribu-
tions than we had space to include here (e.g., the Mallows
model). More generally, the study of iterative voting would
be greatly enhanced by incorporating voter learning into the
model, and endowing voters with a greater degree of strate-
gic (non-myopic) capabilities (early work in this direction
includes Obraztsova et al. [15]).
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ABSTRACT
The stable marriage problem and its extensions have been
extensively studied, with much of the work in the literature
assuming that agents fully know their own preferences over
alternatives. This assumption however is not always prac-
tical (especially in large markets) and agents usually need
to go through some costly deliberation process in order to
learn their preferences. In this paper we assume that such
deliberations are carried out via interviews, where an in-
terview involves a man and a woman, each of whom learns
information about the other as a consequence. If everybody
interviews everyone else, then clearly agents can fully learn
their preferences. But interviews are costly, and we may
wish to minimize their use. It is often the case, especially
in practical settings, that due to correlation between agents’
preferences, it is unnecessary for all potential interviews to
be carried out in order to obtain a stable matching. Thus
the problem is to find a good strategy for interviews to be
carried out in order to minimize their use, whilst leading to a
stable matching. One way to evaluate the performance of an
interview strategy is to compare it against a näıve algorithm
that conducts all interviews. We argue however that a more
meaningful comparison would be against an optimal o✏ine
algorithm that has access to agents’ preference orderings un-
der complete information. We show that, unless P=NP, no
o✏ine algorithm can compute the optimal interview strat-
egy in polynomial time. If we are additionally aiming for a
particular stable matching (perhaps one with certain desir-
able properties), we provide restricted settings under which
e�cient optimal o✏ine algorithms exist.

Categories and Subject Descriptors
Theory of Computation [Algorithmic game theory and

mechanism design]: Algorithmic game theory

General Terms
Algorithms, Economics, Theory

Keywords
Two-sided matching, preferences, interviews

Appears at: 3rd Workshop on Exploring Beyond the Worst Case in
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ference on Autonomous Agents and Multiagent Systems. May 9th-10th,
2016. Singapore.

1. INTRODUCTION
Two-sided matching markets model many practical set-

tings, such as corporate hiring and university admission [21,
16]. The classical stable marriage problem is perhaps the
most widely studied matching problem in this class, where
participants are partitioned into two disjoint sets – men and
women – and each participant on one side of the market
wishes to be matched to a candidate from the other side of
the market, and has preferences over potential matches. A
matching is called stable if no pair of participants would
prefer to leave their assigned partners to pair with each
other. Gale and Shapley’s seminal paper [4] proposed a
polynomial-time algorithm for finding a stable matching.
The books by Knuth [13], Gusfield and Irving [6], Roth and
Sotomayor [21], and Manlove [16] provide excellent intro-
ductions and surveys.

A key assumption in much of this literature is that all mar-
ket participants know their full preference orderings. The
classical Gale-Shapley (GS) algorithm [4] and its variants
require participants’ preferences as input. This assumption
is reasonable in some settings. However, as markets grow
large (e.g., in the hospitals-residents matching market [20,
8] or college admission market [4, 22]) it quickly becomes
impractical for participants to assess their precise prefer-
ence rankings. Instead, participants usually start out with
some partial knowledge about their preferences and need
to perform some deliberation in order to learn their precise
preference ordering. In this paper we assume that delib-
erations are carried out via interviews, where an interview
is a unit operation that involves one agent from each side
of the market and is informative to both participants. For
example, in the hospitals-residents problem (which models
the entry-level labor market in which graduating medical
students, or residents, are seeking to be assigned to hospi-
tal posts), hospitals are likely to be able to identify their
“top-tier” residents, “second-tier” residents and so on, and in
order to rank the residents in each tier they need to inter-
view them. An interview between a hospital h and a resident
r yields information about the qualities of each party to the
other. Thus we initially assume that each agent’s preference
list is in general expressed in terms of a partial order, and af-
ter an agent has interviewed ` members of the opposite side
of the market, he/she has discovered enough information to
rank those elements in strict order.

In order to be able to use the GS algorithm to find a sta-
ble matching in this setting, a näıve solution is for each par-
ticipant to conduct all potential interviews and fully learn
their preferences. Interviews however are usually costly both



in terms of time, mental energy, and money, therefore we
wish to minimize their usage. Indeed, the näıve approach
may impose unnecessary deliberation. For example, in the
hospitals-residents problem, one expects some degree of cor-
relation across hospitals in the assessment of the most de-
sirable residents, and likewise residents are expected to have
correlated views (at least to some extent) on the desirabil-
ity of hospitals. Therefore, it is expected that more desir-
able residents get matched to more desirable hospitals and
so on. It is then not hard to see that it is wasted e↵ort
if a top-tier resident is to interview low-tier hospitals, or a
second-tier resident is to interview top-tier hospitals. For
a concrete example, consider a setting with four residents
and four hospitals where each hospital can admit (at most)
one resident. Assume that residents r1 and r2 are top-tier
residents and r3 and r4 are second-tier residents. Likewise
assume that h1 and h2 are top-tier hospitals and h3 and h4

are second-tier hospitals. The preference lists of all agents
are correlated according to these hierarchies, although each
agent’s individual strict ranking (initially unknown) within
these hierarchies may di↵er. It is not hard to verify that no
matter what the true (initially unknown) preference order-
ings of the participants are, under a stable matching r1 and
r2 each gets matched to either h1 or h2, and r3 and r4 each
gets matched to either h3 or h4. Thus an interview between
r1 and either h3 or h4 is unnecessary, for example.
Unfortunately, we cannot always avoid unnecessary inter-

views. For example consider a setting with two residents and
two hospitals, where initially agents have no information on
their preference orderings and hence cannot compare the two
alternatives. W.l.o.g. assume that h1 interviews both resi-
dents and learns that it prefers r1 to r2. If r1 additionally
interviews h2 and learns that he prefers h1 to h2, then a
stable matching µ is found after 3 interviews, in which hi

is matched to ri (1  i  2). Now imagine that r1 instead
learns that he prefers h2 to h1. It is easy to verify that the
identity of a stable matching is not yet revealed and hence
more interviews are required. The only remaining interview
is between h2 and r2 after which one can definitely identify
a stable matching. If h2 learns that it prefers r2 to r1 then
µ is a stable matching. Assume that r2 also prefers h2 to h1.
In this case the interview between h1 and r1 is unnecessary
as the three other interviews would have provided enough
information – that h2 and r2 are each others’ top choice –
for µ to be identified as a stable matching. However, a priori
we can not always rule the interview between h1 and r1 as
unnecessary; for example when h2’s top choice is r2 but r2’s
top choice is h1.
Any interviewing strategy leads to refinements of the par-

tial orders contained in the original problem instance that
represented uncertainty over the true preferences. A key aim
could be to carry out su�cient interviews so as to arrive at
an instance that admits a super-stable matching µ. Super-
stability will be defined formally in the next section, but
informally it ensures that µ will be stable regardless of how
the remaining uncertainty is resolved. The original instance
need not admit a super-stable matching (see [9] for an ex-
ample) but we are guaranteed that a super-stable matching
is always achievable (e.g., by conducting all possible inter-
views, we will arrive at a strictly-ordered instance, where
super-stability and classical stability become equivalent, and
the existence of a stable matching is assured [4]).
Thus our aim is to find a good strategy that conducts as

few interviews as possible so as to obtain a refined instance
that admits a super-stable matching. In general any such
strategy will be an online algorithm, since the next interview
to be carried out might depend on the results of previous
ones.

This leads to the question of how to evaluate the perfor-
mance of any given interview strategy. One could compare it
against the näıve algorithm described above that conducts
all interviews. We argue however, by analogy with online
algorithms and their competitive ratio, that it makes more
sense to compare it against an optimal “o✏ine” algorithm.
Here, the optimal o✏ine algorithm has access to agents’ pref-
erence orderings under full information and has to compute
the optimal (i.e., minimum) number of interviews required
in order to reach an information state under which it can
identify a super-stable matching. In this paper we show that
unless P=NP, no o✏ine algorithm can compute an optimal
interview strategy in polynomial time.

Some stable matchings have desirable properties, and we
may be interested in refining the preferences further so as
to obtain such matchings. For example, in the man-optimal

stable matching, each man has the best partner that he could
obtain in any stable matching, whilst the woman-optimal

stable matching has a similar optimality property for the
women. As described above, after a certain number of inter-
views we may reach an instance that admits a super-stable
matching µ. But by carrying out more interviews, some
men, for example, may end up with better partners than
they had in µ. This would be the case if µ is not the man-
optimal stable matching in the instance with the strict (true
underlying) preferences.

If we wish to evaluate the performance of an online algo-
rithm that aims for potential improvements in men’s part-
ners even after a super-stable matching has been identified,
then a suitable o✏ine benchmark for the competitive ratio
would be the minimum number of interviews required to re-
fine the original instance so as to make a specified matching
super-stable. In this paper we show that, whilst this prob-
lem is NP-hard in general, there are restricted cases that are
solvable in polynomial time.

Related work.

Until very recently, the problem of incremental preference
elicitation has received little attention. Several works in the
past few years however have addressed this problem from
di↵erent angles [12, 14, 1, 3, 19, 7, 2]. Those closest in spirit
to ours are [1, 19, 2].

In [19] the authors introduced a stable matching model
in which participants start out with incomplete information
about their preferences, in the form of partially ordered sets,
and are able to refine their knowledge by performing inter-
views. They investigated the problem of minimizing the
number of interviews required to find a matching that is
stable w.r.t. the true underlying strict preference ordering
and additionally is optimal for one side of the market. They
presented several results among which are the following two:
(i) finding a minimum certificate, that is a set of partial pref-
erences that supports an optimal (for one side of the mar-
ket) stable matching is NP-hard, and (ii) in a setting where
participants on one side of the market have the same par-
tially ordered preferences, an optimal interview policy can
be found in polynomial time.

In [1], the authors studied a setting where deliberation is



in the form of pairwise comparison queries (that is, a query
leads to strict order of preference being determined over
two acceptable agents for a given agent). They proposed
a method for finding approximately stable matchings, using
minimax regret as a measure, while keeping the number of
required comparisons relatively low. In [2] the authors com-
bined the comparison query model of [1] with the interview
model of [19] and introduced a unified model where both
types of elicitation can take place. They provided an e�-
cient (polynomial-time) scheme for generating queries and
interviews, and examined the e↵ectiveness of their scheme
via empirical evaluation including comparison against the
polynomial-time algorithm of [19] for the restricted setting
in which participants on one side of the market have the
same partially ordered preferences.

Our work is also related to the body of literature studying
variants of stability defined in settings where agents’ pref-
erences may include ties. As discussed above, super-stable
matchings are relevant in the context of incomplete prefer-
ence information, because they are stable no matter which
refinements represent the true (strict) preferences. Poly-
nomial time algorithms have been proposed for finding a
super-stable matching, or reporting that none exists, in var-
ious two-sided matching markets [9, 15, 10, 18].

In the next section we provide definitions of notation and
terminology, leading to formal statements of the problems
under consideration in this paper. A roadmap of the re-
maining sections is then given at the end of Section 2.

2. PRELIMINARY DEFINITIONS AND
RESULTS

SMPI, SMTI, and levels of stability.

In an instance of the Stable Marriage problem with Par-

tially ordered preferences and Incomplete lists (SMPI), there
are two sets of agents, namely a set of menM = {m1,m2, . . . ,
mn}, and a set of women W = {w1, w2, . . . , wn}. We as-
sume without loss of generality that |M | = |W | (we can
easily reduce the case where the two sets are of di↵erent
sizes to our setting). Let [i] denote the set {1, 2, . . . , i}. We
use the term agents when making statements that apply
to both men and women, and the term candidates to refer
to agents on the opposite side of the market to that of an
agent under consideration. Each agent a finds a subset of
candidates acceptable – we refer to these as a’s acceptable

candidates. An agent a’s preferences over his/her accept-
able candidates need not be strict. That is, given two can-
didates, a might not be able to compare them against each
other. We denote by pmi and pwj the partial orders that
represent the preferences of mi and wj , respectively. We
let pM,W = (pm1 , . . . , pmn , pw1 , . . . , pwn) and call pM,W a
partial preference ordering profile.
Let I = (M,W, pM,W ) be an instance of SMPI, let a be

an agent and let c1 and c2 be two acceptable candidates for
a in I. We say that a strictly prefers c1 to c2 if (c1, c2) 2 pa,
and we say that a cannot compare c1 and c2 (or that a finds
c1 and c2 incomparable) if (c1, c2) /2 pa and (c2, c1) /2 pa.
We sometimes use the graph-theoretic representation of pa
where candidates in pa correspond to vertices and there is
an arc from a candidate ci to a candidate cj if and only if
(ci, cj) 2 pa.
An instance I 0 = (M,W, p0M,W ) of SMPI is a refinement

of I if for each agent a, any strict total order that is a linear
extension of p0a is also a linear extension of pa. We may
also refer to p0M,W being a refinement of pM,W (or indeed
I) using the same definition. Also we can define p0a being a
refinement of pa for some specific agent a similarly.

Observation 1. Given two instances I and I 0 of SMPI,
I 0 is a refinement of I if and only if the following condition

holds: for each agent a and every two candidates c1 and c2
acceptable to a, if (c1, c2) 2 pa then (c1, c2) 2 p0a.

A well studied special case of SMPI is the Stable Marriage

problem with Ties and Incomplete lists (SMTI), in which in-
comparability is transitive and is interpreted as indi↵erence.
In SMTI, each agent has a partition of acceptable candi-
dates into indi↵erence classes or ties such that he or she is
indi↵erent between the candidates in the same indi↵erence
class, but has a strict preference ordering over the indi↵er-
ence classes. In an instance of SMTI, let Ca

t denote the t-th
indi↵erence class of agent a, where t 2 [n]. We assume that
Ca

t = ; implies Ca
t0 = ; for all t0 > t. The Stable Marriage

problem with Incomplete lists (SMI) is the special case of
SMTI in which each tie is of size one. Similarly the Stable

Marriage problem with Ties (SMT) is the special case of
SMTI in which each man finds each woman acceptable and
vice versa.

Given an instance I of SMPI, a matching µ is a pairing of
men and women such that each man is paired with at most
one woman and vice versa, and no agent is matched to an
unacceptable partner. If m and w are matched in µ then
µ(m) = w and µ(w) = m. We say that µ(a) = ? if a is
unmatched under µ. Di↵erent levels of stability can be de-
fined in the context of SMPI [9, 15]. A strong blocking pair

is an acceptable (man,woman) pair, each of whom is un-
matched or strictly prefers the other to his/her partner. A
weakly stable matching is a matching with no strong block-
ing pair. Every instance of SMPI admits a weakly stable
matching [17]. An acceptable (man,woman) pair is a weak

blocking pair if each member of the pair is either unmatched
or strictly prefers the other to his/her partner or cannot
compare the other with his/her partner, and one member of
the pair is either unmatched or strictly prefers the other to
his/her partner. A strongly stable matching is a matching
with no weak blocking pair. Finally a very weak blocking

pair is an acceptable (man,woman) pair, each of whom is
unmatched or strictly prefers to other to his/her partner or
cannot compare the other with his/her partner. A super-

stable matching is a matching with no very weak blocking
pair. It can be easily verified that a matching is super-stable
if and only if it is weakly stable w.r.t. all strict total orders
that are linear extensions of the given partial preference or-
derings [16, Lemma 3.2.4]. In instances of SMI, weak sta-
bility, strong stability and super-stability are all equivalent
to classical stability.

Interviews to refine the partial orders.

In a given instance I = (M,W, pM,W ) of SMPI in this pa-
per, we assume that pM,W , the partial preference ordering
profile, represents the agents’ initial information state. That
is, agents may not have enough information initially in order
to rank their acceptable candidates in strict order. However
in the problem instances that we will later define in this sec-
tion, we will assume that each agent a has a strict preference
ordering �a over his or her acceptable candidates. This rep-



resents the true (and strict) underlying preferences over a’s
acceptable candidates, although crucially, a may not (and in
general will not) initially be aware of the entire ordering. We
let �M,W= (�m1 , . . . ,�mn ,�w1 , . . . ,�wn) and call �M,W a
strict (true underlying) preference ordering profile. The task
of the agents is to learn enough information about their ac-
ceptable candidates in order to refine their preferences, in a
manner consistent with �M,W , to obtain an SMPI instance
I 0 that admits a super-stable matching µ (thus µ will be
stable with respect to �M,W ).

Following the model introduced in [19], we assume that
instances can be refined through interviews. Each interview
pairs one man m with one woman w. An interview is infor-
mative to both parties involved. Hence saying“m interviews
w” is equivalent to saying “w interviews m”. When agent a
interviews ` candidates, this results in a new refined SMPI
instance which is exactly the same as I except that a now
has a strict preference ordering over the ` interviewed can-
didates.

Notice that if an agent interviews only one candidate, no
refinement takes place. Note also that not all refinements
of I can be reached by a set of interviews. For example,
suppose that in I we have one man m1 and three women w1,
w2, and w3. Suppose m1 finds the three women acceptable
and incomparable. Assume that in I 0 man m1 prefers w1 to
both w2 and w3, and cannot compare w2 and w3. It is easy
to see that I 0 is a refinement of I, but no set of interviews
can reach I 0: for m1 to learn that he prefers w1 to the other
two women he must interview all three women, but then he
will have a strict preference ordering over the three of them.
We say that an SMPI instance I 0 is an interview-compatible

refinement of an SMPI instance I if I 0 can be refined from
I using interviews. We now show that interview-compatible
refinements can be recognized easily.

Proposition 2. Let I and I 0 be two instances of SMPI.
We can determine in O(n3) time whether I 0 is an interview-

compatible refinement of I.

Proof. To verify whether I 0 is a refinement of I, it is
su�cient to check whether the condition of Observation 1
holds. With a suitable data structure, we can do this in
O(n3) time. For each agent a identify the edges present in p0a
that are not in pa, and let S(a) be the set of candidates in p0a
that form an endpoint of at least one such edge. For I 0 to be
an interview-compatible refinement of I, it is necessary and
su�cient that, for every a, S(a) forms a complete subgraph
in the undirected graph corresponding to p0a. This can be
tested in O(n3) time overall.

Let I 0 be an SMPI instance that is an interview-compatible
refinement of a given SMPI instance I. We define the cost

of I 0 given I to be the minimum number of interviews re-
quired to refine I into I 0. The following proposition shows
how to compute this cost e�ciently.

Proposition 3. Let I be an SMPI instance and let I 0 be
an interview-compatible refinement of I. We can determine

in O(n3) time the cost of I 0 given I.

Proof. We identify the set of interviews T that refines
I into I 0 as follows. Initially T = ;. For each agent a and
every two candidates c1 and c2, if a cannot compare c1 and
c2 under I, but prefers one to the other under I 0, a must
have interviewed both c1 and c2. Add both of these inter-
views to T . Notice that we might have already accounted

r1 : h1 h2 h1 : r2 r1
r2 : h2 h1 h2 : r2 r1

Figure 1: A stable marriage problem instance.

for one or both of these interviews. However since T is a set,
no interview is going to be included in T more than once.
With a suitable data structure, the aforementioned proce-
dure terminates in O(n3) time overall, and once it does, |T |
denotes the cost of I 0.

Problem definitions.

The motivating problem is as follows: given an instance
I = (M,W, pM,W ) of SMPI, find an interview-compatible
refinement I 0 of minimum cost such that I 0 admits a super-
stable matching. Since the result of one interview might
influence which interview/s to carry out next, any strategy
for carrying out interviews should be regarded as an online
algorithm.

In fact there may be no online algorithm that can guaran-
tee to provide an optimal solution in all cases. To see this,
let us return to the example of Section 1 involving two resi-
dents and two hospitals, and suppose that initially everyone
finds the two agents on the other side of the market accept-
able and incomparable. Let the true underlying preferences
be given by Figure 1 (here, preference lists are ordered from
left to right in decreasing order of preference). Any online
interviewing strategy must start with one interview in the
absence of any knowledge; w.l.o.g. suppose that the first in-
terview involves r1 and h1. Then it may be verified that the
algorithm is bound to use 3 more interviews before a super-
stable matching can be found. (If one interview does not
take place then two agents on opposite sides of the market
cannot compare the two candidates in their preference list;
it then follows that each of the two possible matchings would
be blocked according to super-stability.) On the other hand
the interview involving r1 and h1 was unnecessary and an
optimal strategy uses only 3 interviews.

Towards computing bounds for the competitive ratio of an
online algorithm, the o✏ine scenario is of interest, and that
is what we consider in what follows. In the o✏ine case, the
mechanism designer is given �M,W , the strict (true under-
lying) preference ordering profile of the agents, and would
like to compute an optimal interviewing schedule, i.e., an
interview-compatible refinement I 0 of I, such that �M,W

refines I 0. This is reflected in the definition of the follow-
ing problem, named Min-ICR, which is an abbreviation for
“Minimum-cost Interview Compatible Refinement problem”.

Definition 4. An instance of Min-ICR comprises a tu-

ple (I,�M,W ), where I is an instance of SMPI and �M,W

is a strict preference ordering profile that refines I. The

problem is to find an interview-compatible refinement I 0 of

I such that (i) �M,W refines I 0, (ii) I 0 admits a super-

stable matching, and (iii) I 0 is of minimum cost amongst

interview-compatible refinements that satisfy (i) and (ii).

The decision version of Min-ICR is defined as follows.

Definition 5. An instance of ICR-Dec comprises a tu-

ple (I,�M,W ,K), where I is an instance of SMPI, �M,W



is a strict preference ordering profile that refines I, and K
is a non-negative integer. The problem is to decide whether

there exists an interview-compatible refinement I 0 of I, with
cost at most K, such that �M,W refines I 0 and I 0 admits a

super-stable matching.

As discussed in Section 1, it is sometimes the case that we
aim for a particular matching, stable under �M,W , that has
some desirable properties, for example the woman-optimal
stable matching. The o✏ine problem can then be viewed
as a restricted variant of Min-ICR where, in addition to I
and �M,W , we are also equipped with a matching µ. This is
reflected in the definition of the following problem, named
Min-ICR-Exact, which is an abbreviation for “Minimum-
cost Interview Compatible Refinement problem with Exact
matching”.

Definition 6. An instance of Min-ICR-Exact comprises

a tuple (I,�M,W , µ), where I is an instance of SMPI, �M,W

is a strict preference ordering profile that refines I, and µ is

a matching that is weakly stable w.r.t. �M,W . The problem

is to find an interview-compatible refinement I 0 of I, such

that (i) �M,W refines I 0, (ii) µ is super-stable in I 0, and (iii)

I 0 is of minimum cost amongst interview-compatible refine-

ments of I that satisfy (i) and (ii).

The decision version of Min-ICR-Exact, called ICR-
Exact-Dec, is then defined analogously to the way that
ICR-Dec was obtained from the definition of Min-ICR.

The remainder of this paper is organized as follows. In
Section 3 we first show that ICR-Dec is NP-complete even
under quite restricted settings. The proof is by reduction
from Vertex Cover. We also leverage the same proof to show
that ICR-Exact-Dec is also NP-complete. Then in Section
4 we provide a reverse reduction, from Vertex Cover to ICR-
Exact-Dec, and utilize it to show that Min-ICR-Exact
is polynomial-time solvable for several restricted settings.
Some concluding remarks are presented in Section 5.

3. NP-COMPLETENESS RESULTS
We show that ICR-Dec is NP-complete even if I is an

instance of SMTI in which each indi↵erence class is of size
at most 3. Further, we prove that ICR-Dec is NP-complete
even for SMT instances, and even if all men are indi↵erent
between all women. We first provide a lemma that will come
in handy in proving our claims; the proof is straightforward,
and is omitted.

Lemma 7. Let G = (V,E) be an undirected graph where

for each vertex v, deg(v)  3. We can direct the edges in E
such that for each v, deg+(v)  2 and deg�(v)  2.

Unlike many problems that are NP-complete, the mem-
bership of ICR-Dec in the class NP is not trivial. Hence,
we provide a proof via the following lemma.

Lemma 8. ICR-Dec is in NP.

Proof. To prove this, it is su�cient to show that given
SMPI instances I and I 0, a strict preference profile �M,W

and an integer K, we can decide in polynomial time whether
(i) I 0 is an interview-compatible refinement of I, (ii) I 0 has
cost at most K, (iii) �M,W refines I 0, and (iv) I 0 admits a
super-stable matching.

Both (i) and (ii) are established by Propositions 2 and
3 respectively. For (iii), it is straightforward to check in
polynomial time whether �M,W refines I 0.

Finally to establish (iv), we can use the polynomial time
algorithm of [18], SUPER-SMP, to decide whether I 0 admits
a super-stable matching or not.

We show that ICR-Dec is NP-hard by reducing from the
decision version of the Vertex Cover problem (VC). VC is
defined as follows: given a graph G = (V,E) and an integer
K, decide whether G admits a vertex cover of size at most
K. VC is NP-complete even if each vertex has degree at
most 3 [5]; let VC-3 denote this restriction. We denote by
Min-VC the optimization version of VC, that is the problem
of finding a minimum vertex cover in a given graph G.

Theorem 9. ICR-Dec is NP-complete even for SMTI
instances in which each indi↵erence class has size at most 3.

Proof. By Lemma 8, ICR-Dec belongs to NP. To show
NP-hardness, we reduce from VC-3. Let the undirected
simple graph G = (V,E) be given such that deg(v)  3,
8v 2 V . Let V = {v1, . . . , vn}. Let G0 = (V,E0) be a
digraph where (i) 8(vi, vj) 2 E0, (vi, vj) 2 E, (ii) 8(vi, vj) 2
E, either (vi, vj) 2 E0 or (vj , vi) 2 E0 (but not both), and
(iii) 8v 2 V , deg+(v)  2 and deg�(v)  2. Note that by
Lemma 7 such a graph G0 exists. We create an instance
I = (M,W, pM,W ) of SMTI as follows:

• For each vertex vi 2 V there is a man mi 2 M and
a woman wi 2 W . That is M = {mi|8vi 2 V } and
W = {wi|8vi 2 V }.

• Each man mi finds acceptable wi and all women wj

such that (vi, vj) 2 E0. Moreover, each man mi is
indi↵erent between all his acceptable women.

• Each woman wi finds acceptable mi and all men mj

such that (vj , vi) 2 E0. Moreover, each woman wi is
indi↵erent between all her acceptable men.

Note that the total length of the men’s preference lists
is equal to |E| + |V |. Also note that as deg+(v)  2 and
deg�(v)  2 for all v 2 V , hence the indi↵erence classes are
of size at most 3. Let �M,W be a strict preference ordering
under which mi and wi rank each other at the top of their
preference lists. We prove that G has a vertex cover of size
at most K if and only if there exists a refinement I 0 of I, of
cost at most K0 = K + |E|, such that �M,W refines I 0 and
I 0 admits a super-stable matching. Notice that �M,W ad-
mits only one stable matching, that being µ = {(mi, wi)|8i}.
This implies that I 0 must admit exactly one super-stable
matching, that being µ.

Proof of the only-if direction: Assume that G has a vertex

cover C of size k  K. We show that there is a refinement

I 0 of cost k0 = k + |E|  K0
such that �M,W refines I 0 and

µ is super-stable in I 0. We create I 0 as follows. For each
vertex vi 2 C refine I such that both mi and wi now have
strict preferences as in �M,W This refinement can of course
be achieved by having both mi and wi interview all candi-
dates in their lists; this includes an interview between mi

and wi. Notice that since interviews are informative to both
parties involved, partial refinements in the preference order-
ings of those persons whose corresponding vertices are not
in C must have taken place as well. For example, consider a
case in which vi, vj 2 C, vk /2 C, and (vi, vk), (vj , vk) 2 E0.



Then both mi and mj interview wk and hence wk must now
rank mi and mj in strict order of preferences as in �M,W .
An interview is either between same indexed agents, e.g., be-
tween mi and wi, or between agents of di↵erent indices, e.g.,
between mi and wj where i 6= j. We refer to an interview of
the former type as a same-index interview and an interview
of the latter type as a di↵erent-index interview. The total
number of interviews performed by all agents is going to be
k same-index interview plus a number of di↵erent-index in-
terviews. The number of di↵erent-index interviews under
any refinement can be at most |E|, and under our proposed
refinement is exactly |E| (since C is a vertex cover). There-
fore the total number of interviews is exactly k + |E|. It
remains to show that µ is a super-stable matching in I 0. We
call a (man,woman) pair a fixed pair if they are matched
in every stable matching of every strict order refinement of
I 0. We show that (mi, wi) is a fixed pair for all i  n, hence
proving that µ is the only stable matching in every strict
order refinement of I 0 and therefore definitely a super-stable
matching in I 0. Take any pair (mi, wi) such that vi 2 C.
By our construction, mi and wi rank each other at top, so
clearly (mi, wi) is a fixed pair. Now take any pair (mj , wj)
such that vj /2 C. Since vj is not in the vertex cover, there-
fore it must be the case that all neighbors of vj are in C.
Thus, for any vk that is a neighbor of vj , it has been already
established that (mk, wk) is a fixed pair. Therefore (mj , wj)
is also a fixed pair. Moreover, neither mj nor wj can form a
very weak blocking pair with a person they are not matched
to.

Proof of the if direction: Assume that I has a refinement

I 0 of cost k0  K0
such that �M,W refines I 0 and µ is super-

stable in I 0. We show that G admits a vertex cover of size

at most k0 � |E|  K. We first show that in order to arrive
at I 0, every agent should have interviewed every candidate
s/he finds acceptable and to whom s/he is not matched. As-
sume for a contradiction that this is not the case. Take a
pair (mi, wj), acceptable to each other, who have not in-
terviewed. Therefore, under I 0, mi is indi↵erent between
wj and wi (to whom he is matched in µ), and wj is indif-
ferent between mi and mj (to whom she is matched in µ).
Hence (mi, wj) constitutes a very weak blocking pair in µ
under I 0, a contradiction. We have established so far that
every agent must have interviewed acceptable candidates to
whom s/he is not matched, which means that each agent
has interviewed all candidates in his/her list who have a dif-
ferent index from him/her. This amounts to the total of
|E| interviews. The only remaining interviews for which we
have not yet accounted are those corresponding to matched
pairs. Let C be a set of vertices such that vertex vi is in
C if and only if mi and wi have interviewed under I 0. No-
tice that |C| = k0 � |E|. Take any vj /2 C. We show that
all neighbors of vj are in C, establishing that C is a vertex
cover. Since vj 62 C, it follows from the construction of C
that mj and wj have not interviewed under I 0. Assume for
a contradiction that vj has a neighbor, say vk, who too is
not in C. Therefore mk and wk have not interviewed under
I 0 either. W.l.o.g. assume that (vj , vk) 2 E0. (A similar
argument applies if (vk, vj) 2 E0.) Therefore mj and wk

are acceptable to each other. Furthermore, since neither mj

nor wk have interviewed their partners in µ, it is the case
that mj is indi↵erent between wj (his partner in µ) and wk,
and wk is indi↵erent between mk (her partner in µ) and mj .
Therefore (mj , wk) constitutes a very weak blocking pair in

µ under I 0, a contradiction.

We next show that ICR-Dec is also NP-complete under
a di↵erent restricted setting by making small alterations to
the proof of Theorem 9.

Corollary 10. ICR-Dec is NP-complete even for SMT
instances and even if agents on one side of the market are

indi↵erent between all the candidates.

Proof. W.l.o.g. assume that all men are indi↵erent be-
tween all women. Modify the reduction presented in the
proof of Theorem 9 as follows.

• For each vertex vi 2 V there is a man mi in M and
a woman wi in W . That is M = {mi|8vi 2 V } and
W = {wi|8vi 2 V }.

• Each man mi finds all women acceptable and is indif-
ferent between them.

• Each woman wi finds all men acceptable and has two
indi↵erence classes. In the top indi↵erence class are mi

and all men mj such that (vi, vj) 2 E. In the second
indi↵erence class are all other men.

Note that the total length of the women’s first indi↵erence
classes is equal to 2|E|+|V |. Let �M,W be a strict preference
ordering under which mi and wi rank each other at the top
of their preference lists. We prove that G has a vertex cover
of size at most K if and only if there exists a refinement
I 0 of I, of cost at most K0 = K + 2|E|, such that �M,W

refines I 0 and I 0 admits a super-stable matching. Notice
that �M,W admits only one stable matching, that being µ =
{(mi, wi)|8i}. This implies that I 0 must admit exactly one
super-stable matching, that being µ. Modify the proof of
Theorem 9 as follows.

In the only-if direction: For each vertex vi 2 C refine I
such that mi has a strict preference ordering, as in �mi , over
women in {wi} [ {wj |(vi, vj) 2 E} and wi has a strict pref-
erence ordering, as in �wi , over men in {mi}[{mj |(vi, vj) 2
E}. Consequently, for all vj adjacent to vi, mi prefers wi

to wj and likewise wi prefers mi to mj . This refinement
can be achieved by having mi interview wi and all wj such
that (vi, vj) 2 E, and additionally having wi interview all
mj such that (vi, vj) 2 E. The number of di↵erent-index
interviews under any refinement can be at most 2|E|, and
under our proposed refinement is exactly 2|E| (since C is a
vertex cover). So the total number of interviews is exactly
k+2|E|. It remains to show that µ is a super-stable match-
ing in I 0. Assume for a contradiction that there exists a very
weak blocking pair (mi, wj).

• If (vi, vj) 2 E, then vi or vj is in C. If vi 2 C then mi

and wi have interviewed and therefore wi �mi wj . If
vj 2 C then mj and wj have interviewed and therefore
mj �wj mi. Both cases imply that (mi, wj) is not a
very weak blocking pair, a contradiction.

• If (vi, vj) /2 E then mj �wj mi, therefore (mi, wj) is
not a very weak blocking pair, a contradiction.

In the if direction: We show that in order to arrive at I 0,
every man mi should have interviewed all women wj such
that (vi, vj) 2 E, and likewise every woman wi should have
interviewed all men mj such that (vi, vj) 2 E. The proof is



similar to that presented in the proof of Theorem 9. Hence
we can conclude that at least 2|E| di↵erent-index interviews
must have taken place in the refinement. The rest of the
proof is similar to that presented in the proof of Theorem 9,
with the di↵erence that |C|  k0 � 2|E|.

In the proof of Theorem 9, µ is the unique stable match-
ing under �M,W . Therefore, it follows from the proofs of
Theorem 9 and Corollary 10 that ICR-Exact-Dec is also
NP-complete for the restrictions stated in those results.

Corollary 11. ICR-Exact-Dec is NP-complete even

for SMTI instances, and even when each indi↵erence class

is of size at most 3. ICR-Exact-Dec is also NP-complete

even for SMTI instances and even if agents on one side of

the market are indi↵erent between all the candidates.

We remark that Theorem 4.4 of [19] implies that ICR-
Exact-Dec is NP-complete and, likewise, Corollary 11 im-
plies Theorem 4.4 of [19]. However, Corollary 11 is stronger
as it is stated for a more restricted setting.

4. POLYNOMIAL-TIME SOLVABLE
VARIANTS

4.1 Preliminaries
In this section we explore the tractability of Min-ICR-

Exact under various restricted settings. Recall that we
have reduced from VC to ICR-Dec and ICR-Exact-Dec
in order to show that these problems are NP-hard. Here we
present a reverse reduction, from ICR-Exact-Dec to VC,
that will come in handy in proving our claims.

Let an instance (I,�M,W , µ) of ICR-Exact-Dec be given.
As µ is weakly stable w.r.t. I, it admits no strong blocking
pair. If µ is not super-stable w.r.t. I, then µ must admit
some very weak blocking pairs. We refer to such blocking
pairs as potential blocking pairs. We distinguish between be-
tween potential blocking pairs by the degree of choice one
has when attempting to resolve them.

Definition 12 (Potential Blocking Pair (PBP)).
Given an ICR-Exact-Dec instance (I,�M,W , µ), a pair

(m,w) is a potential blocking pair (PBP) if (m,w) is a

very weak blocking pair under I. Each PBP (m,w) belongs

to either of the following classes.

• Potential Blocking Pair of Degree 1 (PBP-D1) if either
m or w strictly prefers the other to his or her current

partner under �M,W .

• Potential Blocking Pair of Degree 2 (PBP-D2) if both

m and w strictly prefer their partners to each other

under �M,W .

Let I 0 be an interview-compatible refinement of I. We say
that a given potential blocking pair of I, (m,w), is resolved
under I 0 if (µ(m), w) 2 p0m or (µ(w),m) 2 p0w.

If (m,w) is a PBP-D2, then it must be that m and w
cannot compare each other and their current partners under
I. Thus in order to resolve (m,w) it is su�cient, and nec-
essary, that m or w learn his/her true preference ordering
over his/her partner and the other side.
Let (m,w) be a PBP-D1 and assume thatm strictly prefers

w to µ(m) (the argument is similar if m �w µ(w)). There-
fore, w must find m and µ(w) incomparable under I, or

(m,w) either blocks µ or is not a PBP, and µ(w) �w m, or
(m,w) blocks µ. Furthermore, in order to resolve this PBP
w has to learn that she prefers µ(w) to m.

In what follows we use PBP , PBP1, and PBP2 to refer
to the set of potential blocking pairs, and those of degree 1
and degree 2 respectively.

Proposition 13. Let (I,�M,W , µ) be an instance of ICR-
Exact-Dec and I 0 be an interview-compatible refinement of

I. Then µ is super-stable under I 0 if and only if all PBPs

in I are resolved under I 0.

It is easy to see that for a potential blocking pair (m,w) to
be resolved, at least one of m or w needs to interview both
the other side and his or her current partner and conclude
that s/he prefers his or her current partner to the other side.
The next proposition then immediately follows.

Proposition 14. Let (I,�M,W , µ) be an instance of ICR-
Exact-Dec and I 0 be an interview-compatible refinement of

I. Then µ is super-stable under I 0 only if, for all (m,w) 2
PBP , m and w have interviewed under I 0.

For each agent a 2 M [W let PBP1(a) denote the set of
candidates c such that either (a, c) or (c, a) is in PBP1 and
a �c µ(c).

Lemma 15. Let (I,�M,W , µ) be an instance of ICR-Exact-
Dec and I 0 be an interview-compatible refinement of I. Then

µ is super-stable under I 0 only if a has interviewed µ(a)under
I 0 for all agents a where PBP1(a) 6= ;.

Proof. Assume for a contradiction that there exists an
agent a where PBP1(a) 6= ; and a has not interviewed µ(a).
Therefore for every c 2 PBP1(a) it is still the case that a
cannot compare c and µ(a), and c prefers a to µ(c). Hence
there exists at least one unresolved PBP under I 0.

4.2 Reduction from ICR-Exact-Dec to VC

Let (I,�M,W , µ) be an instance of ICR-Exact-Dec. Let
M 0 = {m|PBP1(m) 6= ;_PBP1(µ(m)) 6= ;}. Let G(I, µ) =
(V,E) be an undirected graph whose vertices V correspond
to matched pairs (m,µ(m)). Let PBP 0

2 = {(m,w)|(m,w) 2
PBP2,m /2 M 0, µ(w) /2 M 0}. Let there be an edge between
any two vertices (m,µ(m)) and (m0, µ(m0)) if (m,µ(m0)) 2
PBP 0

2 or (m0, µ(m)) 2 PBP 0
2. Remove any vertex with

degree zero. Note that for any remaining vertex (m,µ(m))
it is the case that m /2 M 0.

Theorem 16. G(I, µ) has a vertex cover of size at most

K if and only if there exists a refinement I 0 of I, of cost at
most K0 = |PBP |+ |M 0|+K, such that �m,w refines I 0 and
µ is super-stable in I 0.

Proof. Assume that G(I, µ) has a vertex cover C of size
at most K. Let I 0 be a refinement of I under which the
following interviews have taken place.

1. Each pair (m,w) 2 PBP interview each other – a total
of |PBP | interviews.

2. Each m 2 M 0 interviews his partner µ(m) – a total of
|M 0| interviews.

3. Each pair (m,µ(m)) 2 C interview each other – a total
of K interviews.



The total number of interviews is then equal to |PBP | +
|M 0| + K. As a result of the above interviews, each agent
a learns his or her strict preference ordering over the inter-
viewed candidates, as in �a. (Recall that the interviews are
informative to both sides.) It is then easy to see that all
PBP-D1’s are resolved. It is also straightforward to see that
for a PBP-D2 (m,w), if either m 2 M 0 or µ(w) 2 M 0, then
(m,w) is resolved under I 0. It remains to show that the re-
maining PBP-D2’s, that is those in PBP 0

2, are resolved as
well. Let (m,w) be such a PBP-D2. By the construction
of G(I, µ), V includes (m,µ(m)) and (µ(w), w) and there
is an edge between these two vertices. As C is a vertex
cover, at least one of (m,µ(m)) or (µ(w), w) belongs to C.
If (m,µ(m)) 2 C then, following the results of the inter-
views, m prefers µ(m) to w under I 0. (A similar argument
holds for w if (µ(w), w) 2 C.) Therefore (m,w) is resolved
under I 0.
Conversely, assume that I admits an interview-compatible

refinement I 0 of size at most K0 such that µ is super-stable
in I 0. We show that G(I, µ) admits a vertex cover of size
at most K0 � (|PBP | + |M 0|). Let C be a set of vertices
(m,µ(m)) in V where m and µ(m) have interviewed under
I 0. Note that as we have removed all vertices of degree zero
from G(I, µ), hence all remaining vertices are adjacent to
at least one edge corresponding to a member of PBP 0

2. We
show that C is a vertex cover and then prove an upper bound
on the size of C.
C is a vertex cover: Let ((m,µ(m)), (m0, µ(m0))) be

any edge in E. By the construction of G(I, µ), (m,µ(m0)) or
(m0, µ(m)) is in PBP 0

2. Assume that (m,µ(m0)) 2 PBP 0
2.

(The argument for the case where (m0, µ(m)) 2 PBP 0
2 is

similar.) As (m,µ(m0)) is resolved under I 0, either m prefers
his partner to µ(m0) under I 0, or µ(m0) prefers her partner
to m under I 0. If the former, then m must have interviewed
µ(m) and hence (m,µ(m)) 2 C, and if the latter then µ(m0)
must have interviewed m0 and thus (m0, µ(m0)) 2 C . Thus
C is a vertex cover.
C is of size at most K0�(|PBP |+ |M 0|): We prove this

by computing a lower bound on the number of interviews
that do not correspond to a vertex in C. It follows Proposi-
tion 14 that all PBPs must have interviewed, hence a total
of |PBP | interviews. It also follows Lemma 15 that each
agent a with PBP1(a) 6= ; must have interviewed his/her
partner. Looking at this from men’s perspective, all men m
must interview µ(m) if PBP1(m) 6= ; or PBP1(µ(m)) 6= ; –
hence a total of |M 0| interviews. Recall that (m,µ(m)) /2 V
if m 2 M 0. Therefore none of the interviews we have ac-
counted for so far, a total of |PBP | + |M 0| interviews, cor-
respond to a vertex in C.

Theorem 16 essentially tells us that an instance (I,�M,W

, µ) of Min-ICR-Exact is polynomial-time solvable if Min-
VC is polynomial-time solvable in G(I, µ). Equipped with
this knowledge, we provide three di↵erent restricted set-
tings under which ICR-Exact-Dec, and hence Min-ICR-
Exact, is solvable in polynomial time.

Theorem 17. Min-ICR-Exact is solvable in polynomial

time if one side has fully known strict preference ordering.

Proof. Assume that women have strict preferences and
the target matching is µ. Note that all PBPs must be of
degree 1. Therefore G(I, µ) is an empty graph with ver-
tex cover of size zero. It follows from Proposition 14 and

Lemma 15 that Min-ICR has a solution of size |PBP | +
|M 0|.

Theorem 18. Min-ICR-Exact is solvable in polynomial

time under the restriction of SMTI in which indi↵erence

classes are of size at most 2.

Proof. We show that G(I, µ) is a collection of cycles and
paths, and hence its minimum vertex cover can be computed
in polynomial time. The size of a minimum vertex cover for
any path or cycle of length ` is

⌃
`
2

⌥
.

Take any vertex v1 = (m,µ(m)) in V . Recall that if any
vertex v2 = (m0, µ(m0)) is a neighbor of v1, then it must be
that at least one of (m,µ(m0)) or (m0, µ(m)) is in PBP 0

2.
Note that if (m,µ(m0)) 2 PBP 0

2, then under I man m is
indi↵erent between µ(m) and µ(m0). Since each indi↵erence
class is of size at most 2, at most one such neighbor exists.
Likewise, if (m0, µ(m)) 2 PBP 0

2 then µ(m) is indi↵erent
between m and m0. However, since each indi↵erence class
is of size at most 2, at most one such neighbor exist. Thus,
each vertex has degree at most 2, henceG(I, µ) is a collection
of cycles and paths.

Theorem 19. Min-ICR-Exact is solvable in polynomial

time under the restriction of SMTI in which all men are

endowed with the same indi↵erence classes, as well as all

women. That is Cm
i = Cm0

i for all m,m0 2 M and all

i 2 [n], and Cw
i = Cw0

i for all w,w0 2 W and all i 2 [n].

Proof. We show that G(I, µ) is a collection of complete
graphs, and hence its minimum vertex cover can be com-
puted in polynomial time, since the size of a minimum vertex
cover for any complete graph K` is equal to `� 1. To prove
that G(I, µ) is a collection of complete graphs, we show that
for any three given vertices v1, v2 and v3, if (v1, v2) 2 E and
(v1, v3) 2 E then (v2, v3) 2 E.

Take any three vertices v1 = (m,µ(m)), v2 = (m0, µ(m0)),
and v3 = (m00, µ(m00)). If (v1, v2) 2 E then, under I, all men
are indi↵erent between µ(m) and µ(m0), all women are indif-
ferent between m and m0, and m,m0 /2 M 0. If (v1, v3) 2 E
then, under I, all men are indi↵erent between µ(m) and
µ(m00), all women are indi↵erent between m and m00, and
m00 /2 M 0. Therefore, since I is an instance of SMTI, all
men are indi↵erent between µ(m), µ(m0) and µ(m00), and
all women are indi↵erent between m, m0, and m00. Hence
(m0, µ(m00)) and (m00, µ(m0)) are PBPs. If (m0, µ(m00)) is
a PBP-D2 then, as m0,m00 /2 M 0, (m0, µ(m00)) 2 PBP 0

2

and therefore (v2, v3) 2 E. Assume for a contradiction that
(m0, µ(m00)) is a PBP-D1. Assume that µ(m00) �m0 µ(m0)
(the argument is similar if m0 �µ(m00) m00), implying that
PBP1(µ(m

00)) 6= ; and thus m00 2 M 0, a contradiction.

Theorem 18 is likely to be of more theoretical interest. For
the setting of Theorem 17, we could envisage a hospitals-
residents matching problem where residents are ranked uni-
formly (i.e., in a ”master list” common to all hospitals [11])
according to some known objective value (e.g., which may
be based on academic merit, as in the UK) and residents
must use interviews in order to determine their true prefer-
ences over acceptable hospitals. For the setting of Theorem
19, consider a market with“tiered”preferences, where every-
body agrees who/what belongs to each tier (again the mem-
bership of these tiers could relate to some objective values),
but the precise ordering within these tiers could be subjec-
tive, and up to individuals to determine themselves. For



example, students may use national league tables for deter-
mining top tier universities, second tier universities and so
on, but students’ precise ranking over the universities in any
given tier may vary.

If I is of one of the restricted forms for which Min-ICR-
Exact is polynomial time solvable, then one straightforward
approach to solving Min-ICR is to enumerate all matchings
that are stable under�M,W and then solveMin-ICR-Exact
for each of them. This approach is practical if �M,W admits
a polynomial number of stable matchings.

5. CONCLUSION AND FUTURE WORK
In this paper we have studied the complexity of the o✏ine

problem relating to computing an optimal interview strat-
egy for a stable marriage market where initially participants
have incomplete information, and the aim is to refine the
instance using the minimum number of interviews in order
to arrive at a super-stable matching. The main direction
for future work is to investigate the online case, where the
true underlying preferences are not known to the mechanism
designer, with respect to measures such as the competitive
ratio. Furthermore, an important question for which we do
not know an answer yet is whether Min-ICR is polynomial-
time solvable under some restricted setting. Extending the
known results on interviewing in stable marriage markets to
many-to-one markets such as college admission is another
important future direction. It is also interesting to study on-
line algorithms in a setting where elicitation is taking place
via comparison queries. In this paper we assume that the
objective of the mechanism designer is to minimize the to-
tal number of interviews overall. One may however argue
that such a strategy may require one or may agents to con-
duct most of the interviews while the others do none or very
little. In the view of fairness and the practicality of such
central interview-scheduling schemes, it is also of utmost
importance to study settings in which a fair distribution of
the interviews is also considered.
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ABSTRACT
We study the Price of Anarchy of mechanisms for the well-
known problem of one-sided matching, or house allocation,
with respect to the social welfare objective. We consider
both ordinal mechanisms, where agents submit preference
lists over the items, and cardinal mechanisms, where agents
may submit numerical values for the items being allocated.
We present a general lower bound of ⌦(

p
n) on the Price of

Anarchy, which applies to all mechanisms. We show that
two well-known mechanisms, Probabilistic Serial, and Ran-
dom Priority, achieve a matching upper bound. We extend
our lower bound to the Price of Stability of a large class
of mechanisms that satisfy a common proportionality prop-
erty, and show stronger bounds on the Price of Anarchy of
all deterministic mechanisms.

Categories and Subject Descriptors
I.12.11 [Distributed Artificial Intelligence]: Multiagent
Systems; J.4 [Computer Applications]: Social and Be-
havioral Sciences - Economics

General Terms
Economics, Theory

Keywords
One-sided matching, probabilistic serial, truthfulness, price
of anarchy, Nash equilibrium

1. INTRODUCTION
One-sided matching (also called the house allocation prob-

lem) is the fundamental problem of assigning items to agents,
such that each agent receives exactly one item. It has nu-
merous applications, such as assigning workers to shifts, stu-
dents to courses or patients to doctor appointments. In this
setting, agents are often asked to provide ordinal preferences,
i.e. preference lists, or rankings of the items. We assume
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that underlying these ordinal preferences, agents have nu-
merical values specifying how much they value each item
[18]. In game-theoretic terms, these are the agents’ von
Neumann-Morgenstern utility functions [27] and the associ-
ated preferences are often referred to as cardinal preferences.

A mechanism is a function that maps agents’ valuations
to matchings. However, agents are rational strategic en-
tities that might not always report their valuations truth-
fully; they may misreport their values if that results in a
better matching (from their own perspective). Assuming
the agents report their valuations strategically to maximize
their utilities, it is of interest to study the Nash equilibria of
the induced game, i.e. strategy profiles from which no agent
wishes to unilaterally deviate.

A natural objective for the designer is to choose the match-
ing that maximizes the social welfare, i.e. the sum of agents’
valuations for the items they are matched with, which is the
most prominent measure of aggregate utility in the litera-
ture. Given the strategic nature of the agents, we are in-
terested in mechanisms that maximize the social welfare in
the equilibrium. We use the standard measure of equilib-
rium ine�ciency, the Price of Anarchy [22], that compares
the maximum social welfare attainable in any matching with
the worst-case social welfare that can be achieved in an equi-
librium.

We evaluate the e�ciency of a mechanism with respect
to the Price of Anarchy of the induced game. We study
both deterministic and randomized mechanisms: in the lat-
ter case the output is a probability mixture over matchings,
instead of a single matching. We are interested in the class
of cardinal mechanisms, which use cardinal preferences, and
generalize the ordinal mechanisms.

Note that our setting involves no monetary transfers and
generally falls under the umbrella of approximate mecha-
nism design without money [24]. In general settings with-
out money, one has to fix a canonical representation of the
valuations. A common approach in the literature is to con-
sider the unit-sum normalization, i.e. each agent has a total
value of 1 for all the items. We obtain results for unit-sum
valuations, and extend most of these to another common
normalization, unit-range.

1.1 Our results
In Section 3 we bound the ine�ciency of the two best-

known mechanisms in the matching literature, Probabilistic



Serial and Random Priority. In particular, for n agents and
n items, the Price of Anarchy is O(

p
n). In Section 4 we

complement this with a matching lower bound (i.e. ⌦(
p
n))

that applies to all cardinal (randomized) mechanisms. As a
result, we conclude that these two ordinal mechanisms (ones
that compute matchings that only depend on preference or-
derings) are optimal. These results suggest that it does not
help a welfare maximizer to ask agents to report more than
the ordinal preferences.

We separately consider deterministic mechanisms and in
Section 4 prove that their Price of Anarchy is ⌦(n2), even
for cardinal mechanisms. This shows that randomization is
necessary for non-trivial worst-case e�ciency guarantees.

In Section 5, we extend our results to more general solu-
tions concepts as well as the case of incomplete information.
Finally, in Section 6, we prove that under a mild “propor-
tionality”property, our lower bound of ⌦(

p
n) extends to the

Price of Stability, a more optimistic measure of e�ciency [3],
which strengthens the negative results even further. Ad-
ditionally, we discuss how our results extend to the other
common normalization in the literature, unit-range [2, 15,
28].

1.2 Discussion and related work
The one-sided matching problem was introduced in [18]

and has been studied extensively ever since (see [1] for a
recent overview). Over the years, several di↵erent mecha-
nisms have been proposed with various desirable properties
related to truthfulness, fairness and economic e�ciency with
Probabilistic Serial [9, 7, 8, 1] and Random Priority [1, 9, 4,
23, 15, 2] being the two prominent examples.

As mentioned earlier, in settings without money, one needs
to represent the valuations in some canonical way. A com-
mon approach is the unit-sum normalization, i.e. each agent
has a total value of 1 for all the items. Intuitively, this nor-
malization means that each agent has equal influence within
the mechanism and her values can be interpreted as “scrip
money” that she uses to acquire items. The unit-sum rep-
resentation is standard for social welfare maximization in
many settings without money including fair division, cake
cutting and resource allocation [10, 11, 16, 15] among oth-
ers. Moreover, without any normalization, non-trivial Price
of Anarchy bounds cannot be achieved by any mechanism.

The objective of social welfare maximization for one-sided
matching problems has been studied before in the litera-
ture, but mainly for truthful mechanisms [2, 15]. Our lower
bounds are more general, since they apply to all mecha-
nisms, not just truthful ones. In particular, our lower bound
on the Price of Anarchy of all mechanisms generalizes the
corresponding bound for truthful mechanisms in [15]. Note
that Random Priority is truthful (truth-telling is a dominant
strategy equilibrium) but it has other equilibria as well; we
observe that the welfare guarantees of the mechanism hold
for all equilibria, not just the truthtelling ones. Similar ap-
proaches have been made for truthful mechanisms like the
second price auction in settings with money.

While given our general lower bound, proving a match-
ing upper bound for Random Priority is enough to establish
tightness, it is still important to know what the welfare guar-
antees of Probabilistic Serial are, given that it is arguably the
most popular one-sided matching mechanism. The mecha-
nism was introduced by [9] and since then, it has been in the
center of attention of the matching literature, with related

work on characterizations [17, 20], extensions [19], strategic
aspects [21] and hardness of manipulation [6]. Somewhat
surprisingly, the Nash equilibria of the mechanism were only
recently studied. Aziz et al. [5] prove that the mechanism
has pure Nash equilibria while Ekici and Kesten [14] study
the ordinal equilibria of the mechanism and prove that the
desirable properties of the mechanism are not necessarily
satisfied for those profiles.

Another, somewhat di↵erent recent branch of study con-
siders ordinal measures of e�ciency instead of social wel-
fare maximization, under the assumption that agents’ pref-
erences are only expressed through preference orderings over
items. Bhalgat et al. [8] study the approximation ratio of
matching mechanisms, when the objective is maximization
of ordinal social welfare, a notion of e�ciency that they de-
fine based solely on ordinal information. Other measures
of e�ciency for one-sided matchings were also studied in
Krysta et al. [23], where the authors design truthful mech-
anisms to approximate the size of a maximum cardinally
(or maximum agent weight) Pareto-optimal matching and
in Chakrabarty and Swamy [12] where the authors consider
the rank approximation as the measure of e�ciency. While
interesting, these measures of e�ciency do not accurately
encapsulate the socially desired outcome the way that social
welfare does, especially since an underlying cardinal utility
structure is part of the setting [9, 18, 27, 28]. Our results
actually suggest that in order to achieve the optimal wel-
fare guarantees, one does not even need to elicit this utility
structure; agents can only be asked to report preference or-
derings, which is arguably more appealing.

Finally, we point out that our work is in a sense analogous
to the literature that studies the Price of Anarchy in item-
bidding auctions (e.g. see [13, 26] and references therein) for
settings without money. Furthermore, the extension of our
results to very general solution concepts (coarse correlated
equilibria) and settings of incomplete information (Bayes-
Nash equilibria) is somehow reminiscent of the smoothness
framework [25] for games. While our results are not proven
using the smoothness condition, our extension technique is
similar in spirit.

2. PRELIMINARIES
Let N = {1, . . . , n} be a finite set of agents and A =

{1, . . . , n} be a finite set of indivisible items. An alloca-
tion is a matching of agents to items, that is, an assignment
of items to agents where each agent gets assigned exactly
one item. We can view an allocation µ as a permutation
vector (µ1, µ2 . . . , µn) where µi is the unique item matched
with agent i. Let O be the set of all allocations. Each
agent i has a valuation function ui : A ! R mapping items
to real numbers. Valuation functions are considered to be
well-defined modulo positive a�ne transformations, that is,
for item j : j ! ↵ui(j) + � is considered to be an alterna-
tive representation of the same valuation function ui. Given
this, we fix the canonical representation of ui to be unit-
sum, that is

P
j ui(j) = 1, with ui(j) � 0 for all i, j.

Equivalently, we can consider valuation functions as valu-
ation vectors ui = (ui1, ui2, . . . , uin) and let V be the set of
all valuation vectors of an agent. Let u = (u1, u2, . . . , un)
denote a typical valuation profile and let V n be the set of
all valuation profiles with n agents.

We consider strategic agents who might have incentives to
misreport their valuations. We define s = (s1, s2, . . . , sn) to



be a pure strategy profile, where si is the reported valuation
vector of agent i. We will use s�i to denote the strategy pro-
file without the ith coordinate and hence s = (si, s�i) is an
alternative way to denote a strategy profile. A direct revela-
tion mechanism without money is a function M : V n ! O
mapping reported valuation profiles to matchings. For a
randomized mechanism, we define M to be a random map
M : V n ! O. Let Mi(s) denote the restriction of the
outcome of the mechanism to the i’th coordinate, which is
the item assigned to agent i by the mechanism. For ran-
domized mechanisms, we let pM,s

ij = Pr[Mi(s) = j] and

pM,s
i = (pM,s

i1 , . . . , pM,s
in ). When it is clear from the con-

text, we drop one or both of the superscripts from the terms
pM,s
ij . The utility of an agent from the outcome of a deter-

ministic mechanism M on input strategy profile s is simply
ui(Mi(s)). For randomized mechanisms, an agent’s utility
is E[ui(Mi(s))] =

Pn
j=1 p

M,s
ij uij .

A subclass of mechanisms that are of particular interest is
that of ordinal mechanisms. Informally, ordinal mechanisms
operate solely based on the ordering of items induced by
the valuation functions and not the actual numerical values
themselves, while cardinal mechanisms take those numerical
values into account. Formally, a mechanism M is ordinal
if for any strategy profiles s, s0 such that for all agents i
and for all items j, `, sij < si` , s0ij < s0i`, it holds that
M(s) = M(s0). A mechanism for which the above does
not necessarily hold is cardinal. Equivalently, the strategy
space of ordinal mechanisms is the set of all permutations
of n items instead of the space of valuation functions V n.
A strategy si of agent i is a preference ordering of items
(a1, a2, . . . , an) where a` � ak for ` < k. We will write j �i

j0 to denote that agent i prefers item j to item j0 according
to her true valuation function and j �si j0 to denote that
she prefers item j to item j0 according to her strategy si.
When it is clear from the context, we abuse the notation
slightly and let ui denote the truthtelling strategy of agent
i, even when the mechanism is ordinal. Note that agents
can be indi↵erent between items and hence the preference
order can be a weak ordering.
Two properties of interest are anonymity and neutrality.

A mechanism is anonymous if the output is invariant under
renamings of the agents and neutral if the output is invariant
under relabeling of the objects.
An equilibrium is a strategy profile in which no agent has

an incentive to deviate to a di↵erent strategy. First, we will
focus on the concept of pure Nash equilibrium, formally

Definition 1. A strategy profile s is a pure Nash equi-
librium if ui(Mi(s)) � ui(Mi(s

0
i, s�i)) for all agents i, and

pure deviating strategies s0i.

In Section 5, we extend our results to more general equilib-
rium notions as well as the setting of incomplete information,
where agents’ values are drawn from known distributions.
Let SM

u denote the set of all pure Nash equilibria of mecha-
nism M under truthful valuation profile u. The measure of
e�ciency that we will use is the pure Price of Anarchy,

PoA(M) = sup
u2V n

SWOPT (u)
mins2SM

u
SWM (u, s)

where SWM (u, s) =
Pn

i=1 E[ui(Mi(s))] is the expected so-
cial welfare of mechanism M on strategy profile s under true
valuation profile u, and SWOPT (u) = maxµ2O

Pn
i=1 ui(µi)

is the social welfare of the optimal matching. Let OPT (u)

be the optimal matching on profile u and let OPTi(u) be
the restriction to the ith coordinate.

3. PRICE OF ANARCHY GUARANTEES
In this section, we prove the (pure) Price of Anarchy guar-

antees of Probabilistic Serial and Random Priority. Together
with our lower bound in the next section, the results estab-
lish that both mechanisms are optimal among all mecha-
nisms for the problem.

Probabilistic Serial
First, we consider Probabilistic Serial, which we abbreviate
to PS. Informally, the mechanism is the following. Each
item can be viewed as an infinitely divisible good that all
agents can consume at unit speed during the unit time inter-
val [0, 1]. Initially each agent consumes her most preferred
item (or one of her most preferred items in case of ties) until
the item is entirely consumed. Then, the agent moves on to
consume the item on top of her preference list, among items
that have not yet been entirely consumed. The mechanism
terminates when all items have been entirely consumed. The
fraction pij of item j consumed by agent i is then interpreted
as the probability that agent i will be matched with item j
under the mechanism.

We prove that the Price of Anarchy of PS is O(
p
n). Aziz

et al. [5] proved that PS has pure Nash equilibria, so it
makes sense to consider the pure Price of Anarchy; we will
extend the result to the coarse correlated Price of Anarchy
and the Bayesian Price of Anarchy in Section 5.

We start with the following two lemmas, which prove that
in a pure Nash equilibrium of the mechanism an agent’s
utility cannot be much worse than what her utility would
be if she were consuming the item she is matched with in
the optimal allocation from the beginning of the mechanism
until the item is entirely consumed. Let tj(s) be the time
when item j is entirely consumed on profile s under PS(s).

Lemma 1. Let s be any strategy profile and let s⇤i be any
strategy such that j �s⇤i

` for all items ` 6= j, i.e. agent
i places item j on top of her preference list. Then it holds
that tj(s

⇤
i , s�i) � 1

4 · tj(s).

Proof. For ease of notation, let s

⇤ = (s⇤i , s�i). Obvi-
ously, if j �si ` for all ` 6= j and since all other agents’
reports are fixed, tj(s

⇤) = tj(s) and the statement of the
lemma holds. Hence, we will assume that there exists some
item j0 6= j such that j0 �si j.

First, note that if agent i is the only one consuming item
j for the duration of the mechanism, then tj(s

⇤) = 1 and
we are done. Hence, assume that at least one other agent
consumes item j at some point, and let ⌧ be the time when
the first agent besides agent i starts consuming item j in
s

⇤. Obviously, tj(s
⇤) > ⌧ , therefore if ⌧ � 1

4 · tj(s) then
tj(s

⇤) � 1
4 · tj(s) and we are done. So assume that ⌧ <

1
4 · tj(s). Next observe that in the interval [⌧, tj(s

⇤)], agent i
can consume at most half of what remains of item i because
there exists at least one other agent consuming the item for
the same duration. Overall, agent i’s consumption is at most
1
2 +

1
4 tj(s) so at least 1

2 �
1
4 tj(s) of the item will be consumed

by the rest of the agents.
Now consider all agents other than i in profile s and let

↵ be the the amount of item j that they have consumed
by time tj(s). Notice that the total consumption speed of



an item is non-decreasing in time which means in particu-
lar that for any 0  �  1, agents other than i need at
least �tj(s) time to consume ↵ · � in profile s. Next, no-
tice that since agent i starts consuming item j at time 0 in
s

⇤ and all other agents use the same strategies in s and s

⇤,
it holds that every agent k 6= i starts consuming item j in
s

⇤ no sooner than she does in s. This means that in pro-
file s

⇤, agents other than i will need more time to consume
� · ↵; in particular they will need at least �tj(s) time, so
tj(s

⇤) � �tj(s). However, from the previous paragraph we
know that they will consume at least 1

2 � 1
4 tj(s), so letting

� = 1
↵

�
1
2 � 1

4 tj(s)
�
we get

tj(s
⇤) � �tj(s) � tj(s)

✓
1
2
� 1

4
· tj(s)

◆
1
↵

� tj(s)

✓
1
2
� 1

4
· tj(s)

◆
� 1

4
· tj(s)

Now we can lower bound the utility of an agent at any pure
Nash equilibrium.

Lemma 2. Let u be the profile of true agent valuations
and let s be a pure Nash equilibrium. For any agent i and
any item j it holds that the utility of agent i at s is at least
1
4 · tj(s) · uij .

Proof. Let s0 = (s0i, s�i) be the strategy profile obtained
from s when agent i deviates to the strategy s0i where s0i is
some strategy such that j �s0i

` for all items ` 6= j. Since
s is a pure Nash equilibrium, it holds that ui(PSi(s)) �
ui(PSi(s

0)) � tj(s
0) · uij , where the last inequality holds

since the utility of agent i is at least as much as the utility
she obtains from the consumption of item j. By Lemma
1, it holds that tj(s

0) � 1
4 · tj(s) and hence ui(PSi(s)) �

1
4 · tj(s) · uij .

We can now prove the pure Price of Anarchy guarantee of
the mechanism.

Theorem 1. The pure Price of Anarchy of Probabilistic
Serial is O(

p
n).

Proof. Let u be any profile of true agents’ valuations
and let s be any pure Nash equilibrium. First, note that
by reporting truthfully, every agent i can get an allocation
that is at least as good as (1/n, . . . , 1/n), regardless of other
agents’ strategies. To see this, first consider time t = 1/n
and observe that during the interval [0, 1/n], agent i is con-
suming her favorite item (say a1) and hence pia1 � 1/n.
Next, consider time ⌧ = 2/n and observe that during the
interval [0, 2/n], agent i is consuming one or both of her two
favorite items (a1 and a2) and hence pia1 +pia2 � 2/n. By a
similar argument, for any k, it holds that

Pn
j=1 piaj � k/n.

This implies that regardless of other agents’ strategies, agent
i can achieve a utility of at least 1

n

Pn
j=1 uij . Since s is a pure

Nash equilibrium, it holds that ui(PSi(s)) � (1/n)
Pn

j=1 uij

as well. Summing over all agents, we get that SWPS(u, s) �
(1/n)

Pn
i=1

Pn
j=1 uij = 1. If SWOPT (u) 

p
n then we are

done, so assume SWOPT (u) >
p
n.

Because PS is neutral we can assume tj(s)  tj0(s) for
j < j0 without loss of generality. Observe that for all j =
1, . . . , n, it holds that tj(s) � j/n. This is true because for
any t 2 [0, 1], by time t, exactly tn mass of items must have

been consumed by the agents. Since j is the jth item that
is entirely consumed, by time tj(s), the mass of items that
must have been consumed is at least j. By this, we get that
tj(s) · n � j, which implies tj(s) � j/n.

For each j let ij be the agent that gets item j in the
optimal allocation and for ease of notation, let wij be her
valuation for the item. Now by Lemma 2, it holds that

uij (PS(s)) � 1
4
j

n
wij and SWPS(u, s) �

1
4

nX

j=1

j

n
wij .

The Price of Anarchy is then at most

4
Pn

j=1 wijPn
j=1 j · wij/n

.

Consider the case when the above ratio is maximized and
let k be an integer such that k 

Pn
j=1 wij  k+1. Then it

must be that wij = 1 for j = 1, . . . , k and wij = 0, for k+2 
ij  n. Hence the maximum ratio is (k+wik+1)/(awik+1+b),
for some a, b > 0, which is monotone for wik+1 in [0, 1].
Therefore, the maximum value of (k + wik+1)/(awik+1 + b)
is achieved when either wik+1 = 0 or wik+1 = 1. As a
result, the maximum value of the ratio is obtained whenP

i=1n wik+1 = k for some k. By simple calculations, the
Price of Anarchy should be at most:

4k
Pk

j=1
j
n

 4k
k(k�1)

2n

=
8n

k � 1
,

so the Price of Anarchy is maximized when k is minimized.
By the argument earlier, k >

p
n and hence the ratio is

O(
p
n).

In Section 5, we extend Theorem 1 to broader solution con-
cepts and the incomplete information setting.

Random Priority
We also consider another very well-known mechanism, Ran-
dom Priority, often referred to as Random Serial Dictator-
ship. The mechanism first fixes an ordering of the agents
uniformly at random and then according to that ordering,
it sequentially matches them with their most preferred item
that is still available. Filos-Ratsikas et al. [15] proved that
the welfare in any truthtelling equilibrium is an ⌦(1/

p
n)-

fraction of the maximum social welfare. While Random Pri-
ority has other equilibria as well, to establish the Price of
Anarchy bound, it su�ces to observe that at least for dis-
tinct valuations, any strategy other than truthtelling does
not a↵ect the allocation and hence it does not a↵ect the
social welfare. Intuitively, since agents pick their most pre-
ferred items, any equilibrium strategy would place the most
preferred available items on top of the preference list, while
the ordering of the items that are not picked does not a↵ect
the allocation of other agents. For valuations that are not
distinct, the argument can be adapted using small pertur-
bations of the values, losing only a small fraction of welfare.

We first we prove the following lemma.

Lemma 3. If valuations are distinct, the social welfare is
the same in all mixed Nash equilibria of Random Priority.

Proof. Let i be an agent, and let B be a subset of the
items. Let s be a mixed Nash equilibrium with the property
that with positive probability, i will be chosen to select an
item at a point when B is the set of remaining items. In that



case (by distinctness of i’s values), i’s strategy should place
agent i’s favourite item in B on the top of the preference list
among items in B. Suppose that for items j and j0, there
is no set of items B that may be o↵ered to i with positive
probability, in which either j or j0 is optimal. Then i may
rank them either way, i.e. can announce j �i j

0 or j0 �i j.
However, that choice has no e↵ect on the other agents, in
particular it cannot a↵ect their social welfare.

Given the main theorem in [15], Lemma 3 implies the
following.

Corollary 1. If valuations are distinct, the Price of An-
archy of Random Priority is ⇥(

p
n).

The same guarantee on the Price of Anarchy holds even
when the true valuations of agents are not necessarily dis-
tinct.

Theorem 2. The Price of Anarchy of Random Priority
is O(

p
n).

Proof. We know from [15] that the social welfare of Ran-
dom Priority given truthful reports, is within O(

p
n) of the

social optimum. The social welfare of a (mixed) Nash equi-
librium q cannot be worse than the worst pure profile from
q that occurs with positive probability, so let s be such a
pure profile. We will say that agent i misranks items j and
j0 if j �i j

0, but j0 �si j.
If an agent misranks two items for which she has distinct

values, it is because she has 0 probability in s to receive
either item. So we can change s so that no items are mis-
ranked, without a↵ecting the social welfare or the allocation.
For items that the agent values equally (which are then not
misranked) we can apply arbitrarily small perturbations to
make them distinct. Profile s is thus consistent with rank-
ings of items according to perturbed values and is truthful
with respect to these values, which, being arbitrarily close to
the true ones, have optimum social welfare arbitrarily close
to the true optimal social welfare.

Theorem 2 can be extended to solution concepts more
general than the mixed Nash equilibrium. Again, the details
are included in Section 5.

4. LOWER BOUNDS
In this section, we prove our main lower bound. Note

that the result holds for any mechanism, including random-
ized and cardinal mechanisms. Since we are interested in
mechanisms with good properties, it is natural to consider
those mechanisms that have pure Nash equilibria.

Theorem 3. The pure Price of Anarchy of any mecha-
nism is ⌦(

p
n).

Proof. Assume n = k2 for some k 2 N. Let M be
a mechanism and consider the following valuation profile
u. There are

p
n sets of agents and let Gj denote the j-th

set. For every j 2 {1, . . . ,
p
n} and every agent i 2 Gj , it

holds that uij = 1/n + ↵ and uik = 1/n � ↵/(n � 1), for
k 6= j, where ↵ is su�ciently small. Let s be a pure Nash
equilibrium and for every set Gj , let ij = argmini2Gj p

M,s
ij

(break ties arbitrarily). Observe that for all j = 1, . . . ,
p
n,

it holds that pM,s
ijj

 1/
p
n and let I = {i1, i2, . . . , ipn}. Now

consider the valuation profile u

0 where:

• For every agent i /2 I, u0
i = ui.

• For every agent ij 2 I, let u0
ijj = 1 and u0

ijk
= 0 for

all k 6= j.

We claim that s is a pure Nash equilibrium under u

0 as
well. For agents not in I, the valuations have not changed
and hence they have no incentive to deviate. Assume now
for contradiction that some agent i 2 I whose most pre-
ferred item is item j could deviate to some beneficial strat-
egy s0i. Since agent i only values item j, this would imply

that p
M,(s0i,s�i)
ij > pM,s

ij . However, since agent i values all
items other than j equally under ui and her most preferred
item is item j, such a deviation would also be beneficial un-
der profile u, contradicting the fact that s is a pure Nash
equilibrium.

Now consider the expected social welfare of M under val-
uation profile u

0 at the pure Nash equilibrium s. For agents
not in I and taking ↵ to be less than 1/n3, the contribution
to the social welfare is at most 1. For agents in I, the con-
tribution to the welfare is then at most (1/

p
n)

p
n+ 1 and

hence the expected social welfare of M is at most 3. As the
optimal social welfare is at least

p
n, the bound follows.

Interestingly, if we restrict our attention to deterministic
mechanisms, then we can prove that only trivial pure Price
of Anarchy guarantees are achievable.

Theorem 4. The pure Price of Anarchy of any determin-
istic mechanism is ⌦(n2).

Proof. Let M be a deterministic mechanism that always
has a pure Nash equilibrium. Let u be a valuation profile
such that for for all agents i and i0, it holds that ui = ui0 ,
ui1 = 1/n + 1/n3 and uij > uik for j < k. Let s be a pure
Nash equilibrium for this profile and assume without loss of
generality that Mi(s) = i.

Now fix another true valuation profile u0 such that u0
1 = u1

and for agents i = 2, . . . , n, u0
i,i�1 = 1� ✏0i,i�1 and uij = ✏0ij

for j 6= i� 1, where 0  ✏0ij  1/n3,
P

j 6=i�1 ✏
0
ij = ✏0i,i�1 and

✏0ij > ✏0ik if j < k when j, k 6= i� 1. Intuitively, in profile u

0,
each agent i 2 {2, . . . , n} has valuation close to 1 for item
i � 1 and small valuations for all other items. Futhermore,
she prefers items with smaller indices, except for item i� 1.

We claim that s is a pure Nash equilibrium under true val-
uation profile u as well. Assume for contradiction that some
agent i has a benefiting deviation, which matches her with
an item that she prefers more than i. But then, since the
set of items that she prefers more than i in both u and u

0 is
{1, . . . , i}, the same deviation would match her with a more
preferred item under u as well, contradicting the fact that s
is a pure Nash equilibrium. It holds that SWOPT (u

0) � n�2
whereas the social welfare of M is at most 2/n and the the-
orem follows.

The mechanism that naively maximizes the sum of the re-
ported valuations with no regard to incentives, when equipped
with a lexicographic tie-breaking rule has pure Nash equi-
libria and also achieves the above ratio in the worst-case,
which means that the bounds are tight.

5. GENERAL SOLUTION CONCEPTS
In the previous sections, we employed the pure Nash equi-

librium as the solution concept for bounding the ine�ciency



of mechanisms, mainly because of its simplicity. Here, we
describe how to extend our results to broader well-known
equilibrium concepts in the literature. Due to lack of space,
we will only discuss the two most general solution concepts,
the coarse correlated equilibrium for complete information
and the Bayes-Nash equilibrium for incomplete information.
Since other concepts (like the mixed-Nash equilibrium for
instance) are special cases of those two, it su�ces to use
those for our extensions.

Definition 2. Given a mechanism M , let q be a distri-
bution over strategies. Also, for any distribution � let ��i

denote the marginal distribution without the ith index. Then
a strategy profile q is called a

1. coarse correlated equilibrium if

E
s⇠q

[ui(Mi(s))] � E
s⇠q

[ui(Mi((s
0
i, s�i)))],

2. Bayes-Nash equilibrium for a distribution �u where
each (�u)i is independent, if when u ⇠ �u then q(u) =
⇥iqi(ui) and for all ui in the support of (�u)i,

E
u�i,s⇠q(u)

[ui(Mi(s))] � E
u�i,s�i⇠q�i(u�i)

[ui(Mi(s
0
i, s�i))]

where the given inequalities hold for all agents i, and (pure)
deviating strategies s0i. Also notice that for randomized mech-
anisms definitions are with respect to an expectation over the
random choices of the mechanism.

The coarse correlated and the Bayesian Price of Anarchy are
defined similarly to the pure Price of Anarchy.

Again, first we mention that we can obtain the extensions
to Random Priority rather straightforwardly, based on the
fact that even when using probability mixtures over strate-
gies, an agent will always (in every realization) pick her most
preferred item among the set of available items when she is
chosen. In other words, any pure strategy in the support of
the distribution will rank the most preferred available item
first, and the ordering of the remaining items does not a↵ect
the distribution.

Theorem 5. The coarse correlated Price of Anarchy of
Random Priority is O(

p
n). The Bayesian Price of Anarchy

of Random Priority is O(
p
n).

Proof. For the correlated Price of Anarchy, the argu-
ment is very similar to the one used in the proof of Theorem
2. Again, if any strategy in the support of a correlated equi-
librium q misranks two items j and j0 for any agent i, it can
only be because agent i has 0 probability of receiving those
items, otherwise agent i would deviate to truthtelling, vio-
lating the equilibrium condition. The remaining steps are
exactly the same as in the proof of Theorem 2.

For the incomplete information case, consider any Bayes-
Nash equilibrium q(u) and let u be a any sampled valuation
profile. The expected social welfare of the Random Priority
can be written as Eu

⇥
Es⇠q(u) [ui(s)]

⇤
. Using the same ar-

gument as the one in the proof of Theorem 2, we can lower

bound the quantity Es⇠q(u) [ui(s)] by ⌦
⇣

SWOPT (u)p
n

⌘
and

the bound follows.

Next, we turn to Probabilistic Serial and prove the Price of
Anarchy guarantees, with respect to coarse correlated equi-
libria and Bayes-Nash equilibria. Before we state our theo-
rems however, we will briefly discuss the connection of those

extensions with the smoothness framework of Roughgarden
[25]. According to the definition in [25], a game is (�, µ)-
smooth if it satisfies the following condition

nX

i=1

ui(s
⇤
i , s�i) � �SW (s⇤)� µSW (s), (1)

where s

⇤ is a pure strategy profile that corresponds to the
optimal allocation and s is any pure strategy profile. It is
not hard to see that a (�, µ)-smooth game has a Price of
Anarchy bounded by (µ+ 1)/�.

Since establishing that a game is smooth also implies a
pure Price of Anarchy bound, an alternative way of attempt-
ing to prove Theorem 1 would be to try to show smoothness
of the game induced by PS, for µ/� =

p
n. However, this

seems to be a harder task than what we actually do, since in
such a proof, one would have to argue about the utilities of
agents and possibly reason about the relative preferences for
other items, other than the item they are matched with in
the optimal allocation. Our approach only needs to consider
those items, and hence it seems to be simpler.

An added benefit to the smoothness framework is the ex-
istence of the extension theorem in [25], which states that
for a (�, µ)-smooth game, the Price of Anarchy guarantee
extends to broader solution concepts verbatim, without any
extra work. At first glance, one might think that proving
smoothness for the game induced by PS might be worth the
extra e↵ort, since we would get the extensions “for free”. A
closer look at our proofs however shows that our approach is
very similar to the proof of the extension theorem but using
an alternative, simpler condition.

Specifically, the analysis in [25] uses Inequality 1 as a
building block and substitutes the inequality into the expec-
tations that naturally appear when considering randomized
strategies. This can be done because the condition applies
to all strategy profiles s, when s

⇤ is an optimal strategy
profile. This is exactly what we do as well, but we use the
inequality tj(s

⇤
i , s�i) � 1

4 · tj(s) instead, which is simpler
but su�cient since it only applies to the game at hand. If
OPTi(u) = j, which is what we use in the proof of Theo-
rem 1, then (s⇤i , s�i) can be thought of as a profile where
an agent deviates to her strategy in the optimal profile and
hence the left-hand side of the inequality is analogous to
the left-hand side of Inequality 1. In a sense, the inequality
tj(s

⇤
i , s�i) � 1

4 · tj(s), can be viewed as a “smoothness equiv-
alent” for the game induced by PS, which then allows us to
extend the results to broader solution concepts.

First, we extend Theorem 1 to the case where the solution
concept is the coarse correlated equilibrium.

Theorem 6. The coarse correlated Price of Anarchy of
Probabilistic Serial is O(

p
n).

Proof. Let u be any valuation profile and let i be any
agent. Furthermore, let j = OPTi(u) and let s0i be the pure
strategy that places item j on top of agent i’s preference
list. By Lemma 1, the inequality tj(s

0
i, s�i) � 1

4 tj(s) holds
for every strategy profile s. In particular, it holds for any
pure strategy profile s where si is in the support of the
distribution of the mixed strategy qi of agent i, for any coarse
correlated equilibrium q.This implies that

E
s⇠q

[ui(PSi(s))] � E
s⇠q

[ui(PSi(s
0
i, s�i))]

� E
s⇠q

[uijtj(s
0
i, s�i))] �

1
4
uijtj(s).



where the last inequality holds by Lemma 1. Using this,
we can use very similar arguments to the arguments of the
proof of Theorem 1 and obtain the bound.

For the incomplete information setting, when valuations are
drawn from some publically known distributions, we can
prove the same upper bound on the Bayesian Price of An-
archy of the mechanism.

Theorem 7. The Bayesian Price of Anarchy of Proba-
bilistic Serial is O(

p
n).

Proof. The proof is again similar to the proof of Theo-
rem 1. Let u be a valuation profile drawn from some dis-
tribution satisfying the unit-sum constraint. Let i be any
agent and let ju = OPTi(u), i 2 [n]. Note that by a similar
argument as the one used in the proof of Theorem 1, the
expected social welfare of PS is at least 1 and hence we can
assume that Eu[SWOPT (u)] � 2

p
2n + 1. Observe that in

any Bayes-Nash equilibrium q(u) it holds that

E
u

s⇠q(u)

[ui(s)] = E
ui

2

4 E
u�i

s⇠q(u)

[ui(s)]

3

5

� E
ui

2

4 E
u�i

s�i⇠q�i(u�i)

⇥
ui(s

0
i, s�i)

⇤
3

5

� E
ui

2

4 E
u�i

s�i⇠q�i(u�i)

⇥
uijutju(s

0
i, s�i)

⇤
3

5

� E
ui

2

4 E
u�i

s⇠q(u)


1
4
uijutju(s)

�3

5

=
1
4

E
u

s⇠q(u)

[uijutju(s)]

where the last inequality holds by Lemma 1 since s0i denotes
the strategy that puts item ju on top of agent i’s preference
list. Note that this can be a di↵erent strategy for every
di↵erent u that we sample. For notational convenience, we
use s0i to denote every such strategy. The expected social
welfare at the Bayes-Nash equilibrium is then at least

nX

i=1

E
u,s⇠q(u)

[ui(s)] �
1

4

X

i2[n]

E
u

s⇠q(u)

[uiju tju (s)]

� E
u

s⇠q(u)

2

4
X

i2[n]

i

4n
uiju

3

5

� E
u

s⇠q(u)


SWOPT (u)(SWOPT (u)� 1)

8n

�

= E
u


SWOPT (u)(SWOPT (u)� 1)

8n

�

�
Eu

h
(SWOPT (u))2

i
� Eu [SWOPT (u)]

8n

�
Eu[SWOPT (u)]

2
p
2n

,

and the bound follows.

6. EXTENSIONS

6.1 Price of Stability
Theorem 3 bounds the Price of Anarchy of all mechanisms.

A more optimistic (and hence stronger when proving lower
bounds) measure of e�ciency is the Price of Stability, i.e.
the worst-case ratio over all valuation profiles of the optimal
social welfare over the welfare attained at the best equilib-
rium. We extend Theorem 3 to the Price of Stability of all
mechanisms that satisfy a “proportionality” property.

Let a1 �i a2 �i · · · �i an be the (possibly weak) prefer-
ence ordering of agent i. A random assignment vector pi for
agent i stochastically dominates another random assignment
vector qi if

Pk
j=1 piaj �

Pk
j=1 qiaj , for all k = 1, 2, · · · , n.

The notation that we will use for this relation is pi �sd
i qi.

Definition 3 (Safe strategy). Let M be a mecha-
nism. A strategy si is a safe strategy if for any strategy
profile s�i of the other players, it holds that Mi(si, s�i) �sd

i�
1
n
, 1
n
, . . . , 1

n

�
.

We will say that a mechanism M has a safe strategy if every
agent i has a safe strategy si in M . We now state our lower
bound.

Theorem 8. The pure Price of Stability of any mecha-
nism that has a safe strategy is ⌦(

p
n).

Proof. Let M be a mechanism and let I = {k+1, . . . , n}
be a subset of agents. Let u be the following valuation
profile.

• For all agents i 2 I, let uij = 1
k
for j = 1, · · · , k and

uij = 0 otherwise.

• For all agents i /2 I, let uii = 1 and uij = 0, j 6= i.

Now let s be a pure Nash equilibrium on profile u and let
s0i be a safe strategy of agent i. The expected utility of each
agent i 2 I in the pure Nash equilibrium s is

E[ui(s)] =
X

j2[n]

pij(si, s�i)vij �
X

j2[n]

pij(s
0
i, s�i)vij

� 1
n

X

j2[n]

vij =
1
n
,

due to the fact that s is pure Nash equilibrium and s0i is a safe
strategy of agent i. On the other hand, the utility of agent
i 2 I can be calculated by E[ui(s)] =

P
j2[n] pij(si, s�i)vij =

(
Pk

j=1 pij)/k. Because s is a pure Nash equilibrium, it holds

that E[ui] � 1/n, so we get that
Pk

j=1 pij � k/n for all i 2 I.
As for the rest of the agents,

X

i2N\I

kX

j=1

pij = k �
X

i2I

kX

j=1

pij  k � (n� k)
k

n
=

k2

n
.

This implies that the contribution to the social welfare from
agents not in I is at most k2/n and the expected social
welfare of M will be at most 1 + (k2/n). It holds that
SWOPT (u) � k and the bound follows by letting k =

p
n.

Due to Theorem 8, in order to obtain an ⌦(
p
n) bound for a

mechanism M , it su�ces to prove that M has a safe strat-
egy. In fact, most reasonable mechanisms, including Ran-
dom Priority and Probabilistic Serial, as well as all ordinal
envy-free mechanisms satisfy this property.



Definition 4 (Envy-freeness). A mechanism M is
(ex-ante) envy-free if for all agents i and r and all profiles
s, it holds that

Pn
j=1 pijsij �

Pn
j=1 prjsrj . Furthermore, if

M is ordinal, then this implies pM,s
i �sd

si pM,s
r .

Given the interpretation of a truth-telling safe strategy as a
“proportionality”property, the next lemma is not surprising.

Lemma 4. Let M be an ordinal, envy-free mechanism.
Then for any agent i, the truth-telling strategy ui is a safe
strategy.

Proof. Let s = (ui, s�i) be the strategy profile in which
agent i is truth-telling and the rest of the agents are playing
some strategies s�i. Since M is envy-free and ordinal, it
holds that

P`
j=1 p

s
ij �

P`
j=1 p

s
rj for all agents r 2 {1, . . . , n}

and all ` 2 {1, . . . , n}. Summing up these inequalities for
agents r = 1, 2, . . . , n we obtain

n
X̀

j=1

psij �
X̀

j=1

nX

r=1

psrj = `,

which implies that
P`

j=1 p
s
ij � `

n
, for all i 2 {1, . . . , n}, and

for all ` 2 {1, . . . , n}.

Note that since Probabilistic Serial is ordinal and envy-free
[9], by Lemma 4, it has a safe strategy and hence Theorem
8 applies. It is not hard to see that Random Priority has a
safe strategy too.

Lemma 5. Random Priority has a safe strategy.

Proof. Since Random Priority first fixes an ordering of
agents uniformly at random, every agent i has a probability
of 1/n to be selected first to choose an item, a probability
of 2/n to be selected first or second and so on. If the agent
ranks her items truthfully, then for every ` = 1, . . . , n, it
holds that

P`
i=1 pij � `/n.

In a sense, the safe strategy property is essential for the
bound to hold; one can show that the randomly dictatorial
mechanism, that matches a uniformly chosen agent with her
most preferred item and the rest of the agents with items
based solely on that agent’s reports achieves a constant Price
of Stability. On the other hand, the Price of Anarchy of the
mechanism is ⌦(n). It would be interesting to show whether
Price of Anarchy guarantees imply Price of Stability lower
bounds in general.

6.2 Unit-range representation
Our second extension is concerned with the other nor-

malization that is also common in the literature [28, 2, 15],
the unit-range representation, that is, maxj ui(j) = 1 and
minj ui(j) = 0. First, the Price of Anarchy guarantees from
Section 3 extend directly to the unit-range case. For Ran-
dom Priority, since the results in [15] hold for this normaliza-
tion as well, we can apply the same techniques to prove the
bounds. For Probabilistic Serial, first, observe that Lemma
2 holds independently of the representation. Secondly, in
the proof of Theorem 1, it now holds that

SWPS(u, s) �
1
n

nX

i=1

nX

j=1

uij � 1,

which is su�cient for bounding the Price of Anarchy when
SWOPT (u) 

p
n. Finally, the arguments for the case when

SWOPT (u) 
p
n hold for both representations.

Next, we present a Price of Anarchy lower bound for deter-
ministic mechanisms. First, we prove the following lemma
about the structure of equilibria of deterministic mecha-
nisms. Note that the lemma holds independently of the
choice of representation.

Lemma 6. The set of pure Nash equilibria of any deter-
ministic mechanism is the same for all valuation profiles that
induce the same preference orderings of valuations.

Proof. Let u and u

0 be two di↵erent valuation profiles
that induce the same preference ordering. Let s be a pure
Nash equilibrium under true valuation profile u and assume
for contradiction that it is not a pure Nash equilibrium under
u

0. Then, there exists an agent i who by deviating from s

is matched to a more preferred item according to u0
i. But

that item would also be more preferred according to ui and
hence she would have an incentive to deviate from s under
true valuation profile u, contradicting the fact that s is a
pure Nash equilibrium.

Using Lemma 6, we can then prove the following theorem.

Theorem 9. The Price of Anarchy of any deterministic
mechanism that always has pure Nash equilibria is ⌦(n) for
the unit-range representation.

Proof. Let M be a deterministic mechanism that always
has a pure Nash equilbrium and let u be a valuation profile
such that for all agents i and i0, it holds that ui = ui0 and
uij > uik, for all items i < k. Let s be a pure Nash equilib-
rium for this profile and assume without loss of generality
that Mi(s) = i. By Lemma 6, s is a pure Nash equilibrium
for any profile u that induces the above ordering of valu-
ations. In particular, it is a pure Nash equilibrium for a
valuation profile satisfying

• For agents i = 1, . . . , n
2 , ui1 = 1 and uij < 1

n3 , for
j > 1.

• For agents i = n
2 + 1, . . . , n, uij > 1 � 1

n3 for j =
1, . . . , n/2 and uij < 1

n3 for j = n
2 + 1, . . . , n.

It holds that OPT (u) � n
2 , whereas the social welfare of M

is at most 2 and the theorem follows.

Again, similarly to the corresponding bound in Section
4, the mechanism that naively maximizes the sum of the
reported valuations has pure Nash equilibria and achieves
the above bound.

More importantly, it is not clear whether the general lower
bound on the Price of Anarchy of all mechanisms that we
proved in Theorem 3 extends to the unit-range representa-
tion as well. In fact, we do not know of any bound for the
unit-range case and proving one seems to be a quite com-
plicated task. As a first step in that direction, the follow-
ing theorem obtains a lower bound for ✏-approximate (pure)
Nash equilibria. A strategy profile is an ✏-approximate pure
Nash equilibrium if no agent can deviate to another strategy
and improve her utility by more than ✏. While the following
result applies for any positive ✏, it is weaker than a corre-
sponding result for exact equilibria.



Theorem 10. Let M be a mechanism and let ✏ 2 (0, 1).
The ✏�approximate Price of Anarchy of M is ⌦(n1/4) for
the unit-range representation.

Proof. Assume n = k2, where k 2 N will be the size
of a subset I of “important” agents. We consider valuation
profiles where, for some parameter � 2 (0, 1),

• all agents have value 1 for item 1,

• there is a subset I of agents with |I| = k for which any
agent i 2 I has value �2 for any item j 2 {2, . . . , k+1}
and 0 for all other items,

• for agent i 62 I, i has value �3 for items j 2 {2, . . . , k+
1} and 0 for all other items.

Let u be such a valuation profile and let s be a Nash equi-
librium. In the optimal allocation members of I receive
items {2, . . . , k+1} and such an allocation has social welfare
k�2 + 1.
First, we claim that there are k(1 � 2�) members of I

whose payo↵s in s are at most �; call this set X. If that
were false, then there would be more than 2k� members of
I whose payo↵s in s were more than �. That would imply
that the social welfare of s was more than 2k�2, which would
contradict the optimal social welfare attainable, for large
enough n (specifically, n > 1/�4).
Next, we claim that there are at least k(1 � 2�) non-

members of I whose probability (in s) to receive any item in
{1, . . . , k + 1} is at most 4(k + 1)/n; call this set Y . To see
this, observe that there are at least 3

4n agents who all have
probability  4/n to receive item 1. Furthermore, there are
at least 3n/4 agents who all have probability  4k/n to re-
ceive an item from the set 2, . . . , k + 1. Hence there are at
least n/2 agents whose probabilities to obtain these items
satisfy both properties.

We now consider the operation of swapping the valuations
of the agents in sets X and Y so that the members of I from
X become non-members, and vice versa. We will argue that
given that they were best-responding beforehand, they are
�-best-responding afterwards. Consequently s is an �-NE of
the modified set of agents. The optimum social welfare is
unchanged by this operation since it only involves exchang-
ing the payo↵ functions of pairs of agents. We show that
the social welfare of s is some fraction of the optimal social
welfare, that goes to 0 as n increases and � decreases.

Let I 0 be the set of agents who, after the swap, have the
higher utility of �2 for getting items from {2, . . . , k + 1}.
That is, I 0 is the set of agents in Y , together with I minus
the agents in X.

Following the above valuation swap, the agents in X are
�-best responding. To see this, note that these agents have
had a reduction to their utilities for the outcome of receiving
items from {2, . . . , k + 1}. This means that a profitable
deviation for such agents should result in them being more
likely to obtain item 1, in return for them being less likely
to obtain an item from {2, . . . , k+1}. However they cannot
have probability more than � to receive item 1, since that
would contradict the property that their expected payo↵ was
at most �.

After the swap, the agents in Y are also �-best responding.
Again, these agents have had their utilities increased from �3

to �2 for the outcome of receiving an item from {2, . . . , k +
1}. Hence any profitable deviation for such an agent would

involve a reduction in the probability to get item 1 in return
for an increased probability to get an item from {2, . . . , k +
1}. However, since the payo↵ for any item from {2, . . . , k+1}
is only �2, such a deviation pays less than �.

Finally, observe that the social welfare of s under the new
profile (after the swap) is at most 1 + 3k�3. To see this,
note that (by an earlier argument and the definition of I 0)
k(1�2�) members of I 0 have probability at most 4(k+1)/n
to receive any item from {1, . . . , k+1}. To upper bound the
expected social welfare, note that item 1 contributes 1 to the
social welfare. Items in {2, . . . , k+1} contribute in total, �2

times the expected number of members of I 0 who get them,
plus �3 times the expected number of non-members of I 0

who get them, which is at most �2k2� + �3k(1 � 2�) which
is less than 3k�3.

Overall, the price of anarchy is at least (k�2 + 1)/3k�3,
which is more than 1/�. The statement of the theorem is
obtained by choosing � to be less than ✏, n large enough for
the arguments to hold for the chosen �, i.e. n > 1/�4.

7. CONCLUSION AND FUTURE WORK
Our results are rather negative: we identify a non-constant

lower bound on the Price of Anarchy for one-sided matching,
and find a matching upper bound achieved by well-known
ordinal mechanisms. However, such negative results are im-
portant to understand the challenge faced by a social-welfare
maximizer: for example, we establish that it is not enough
to elicit cardinal valuations, in order to obtain good social
welfare. It may be that better welfare guarantees should
use some assumption of truth-bias, or some assumption of
additional structure in agents’ preferences.

An interesting direction of research would be to identify
conditions on the valuation space that allow for constant val-
ues of the Price of Anarchy or impose some distributional
assumption on the inputs and quantify the average loss in
welfare due to selfish behavior. For the general, worst-case
setting, one question raised is whether one can obtain Price
of Anarchy or Price of Stability bounds that match our up-
per bounds for the unit-range representation as well.
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ABSTRACT
We consider the egalitarian welfare aspects of random as-
signment mechanisms when agents have unrestricted cardi-
nal utilities over the objects. We give bounds on how well
di↵erent random assignment mechanisms approximate the
optimal egalitarian value and investigate the e↵ect that dif-
ferent well-known properties like ordinality, envy-freeness,
and truthfulness have on the achievable egalitarian value.
Finally, we conduct detailed experiments analyzing the
tradeo↵s between e�ciency with envy-freeness or truthful-
ness using two prominent random assignment mechanisms
— random serial dictatorship and the probabilistic serial
mechanism — for di↵erent classes of utility functions and
distributions.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; I.2.11 [Distributed Artificial
Intelligence]: Multiagent Systems; J.4 [Computer Ap-
plications]: Social and Behavioral Sciences - Economics

General Terms
Economics, Theory and Algorithms

Keywords
Game theory (cooperative and non-cooperative), Social
choice theory

1. INTRODUCTION
We explore the tradeo↵s between fairness and e�ciency

for randomized mechanisms for the assignment problem.
Specifically, we consider settings where n agents express
preferences (cardinal or ordinal) over a set of m indivisi-
ble objects. The objective is to assign the objects to agents
in a fair and mutually beneficial manner [5, 9, 23, 27]. This
general setting has a number of important and significant
applications including the assignment of tasks to cores in
cloud computing, kidneys to patients in organ exchanges,

Appears at: 3rd Workshop on Exploring Beyond the Worst Case in
Computational Social Choice. Held as part of the 15th International Con-
ference on Autonomous Agents and Multiagent Systems. May 9th-10th,
2016. Singapore.

runways to airplanes in transportation, and students to seats
in schools. We consider the classic assumption that irrespec-
tive of whether agents are asked to report ordinal or cardinal
preferences, they have an underlying utility structure, where
each agent assigns real values or cardinal valuations to the
di↵erent objects [9, 23, 39, 40].

A well-established criterion for fairness is the Rawlsian
concept of maximizing the happiness of the least satisfied
agent [36, 26, 27, 32]. Following the spirit of this idea, we
quantify the fairness of an allocation in terms of its egal-
itarian value: the minimum ratio of the value of objects
assigned to an agent to his total valuation for all the ob-
jects. The optimal egalitarian value (OEV) for a valuation
profile of all agents is the best egalitarian value achievable
over all assignments. The optimal egalitarian value is well-
grounded for a number of reasons. If each agent has a total
utility of one for the set of all objects (a standard assump-
tion in the literature [12, 15, 18, 20]), it is equivalent to the
maximum egalitarian welfare. The advantage of considering
the optimal egalitarian value is that it does not change if
agents scale their relative values for the objects. Further-
more, if the egalitarian value of each agent is 1/n, then the
well-known proportionality requirement [11] is satisfied.

The egalitarian value is not the only criterion for desir-
able allocation mechanisms. Allocation mechanisms may
have other goals and requirements such as envy-freeness or
truthfulness. Crucially, both these properties are incom-
patible with optimizing the egalitarian value except in very
restricted domains [10]. Thus, it is natural to examine
the tradeo↵s between optimizing the egalitarian value and
achieving other desirable properties. In some settings, such
as kidney exchanges, the tradeo↵ between fairness and e�-
ciency is of the utmost concern [17].

Evaluating these tradeo↵s also motivates the study of how
established mechanisms with other desiderata perform in
terms of the egalitarian value. For a given mechanism J ,
we examine the approximation ratio guar(J), which is the
minimum ratio (among all valuation profiles) of the egalitar-
ian value of an allocation returned by the mechanism to the
optimal egalitarian value. Our work falls under the umbrella
of approximate mechanism design without money, a frame-
work set by Procaccia and Tennenholtz [34] for the study of
how well mechanisms with certain properties approximate
some objective function of the agents’ inputs.

In this paper, we study randomized assignment mecha-
nisms for which achieving ex ante fairness is easier com-



pared to deterministic mechanisms. Thus, to evaluate the
performance of the mechanisms, we compare their egalitar-
ian value with the optimal egalitarian value achieved by any
randomized allocation. Note that computing the allocation
with the optimal egalitarian value is an NP-hard problem
when we restrict ourselves to deterministic allocations [16].
On the other hand, when we consider randomized alloca-
tions, the optimal egalitarian value can be computed in poly-
nomial time via a linear program.

We give extra consideration to two randomized assign-
ment mechanisms — random serial dictatorship (RSD) and
probabilistic serial (PS), which are probably the best-known
and most-studied mechanisms in the random assignment lit-
erature [9, 22]. In RSD,1 a permutation over the agents is
selected uniformly at random and each agent in the permu-
tation picks the most preferred m/n units of object that are
not yet allocated [4, 9, 37]. In PS, each object is considered
to have an infinitely divisible probability weight of one. To
compute an allocation, agents simultaneously and with the
same speed eat the probability weight of their most preferred
object which has not been completely consumed. Once an
object has been completely eaten by a subset of agents, each
of these agents moves on to eat their next most preferred ob-
ject that has not been completely eaten. The procedure ter-
minates after all the objects have been eaten. The random
allocation of an agent by PS is the amount of each object
he has eaten [9, 25]. PS satisfies stochastic dominance (SD)
envy-freeness (envy-freeness with respect to all cardinal util-
ities consistent with the ordinal preferences). We also define
a mechanism which we refer to as Optimal Egalitarian and
Envy-Free Mechanism (OEEF), which maximizes the egal-
itarian value of an allocation under the constraint that the
allocation is envy-free. Allocations under this mechanism
can be computed in polynomial time via linear programming
since envy-freeness can be captured by linear constraints.

1.1 Our contributions
We present novel theoretical and empirical results regard-

ing fairness in randomized mechanisms. Our main theoreti-
cal contributions are as follows.

• For any SD envy-free mechanism J : guar(J) =
O(n�1).

• For any envy-free mechanism J : guar(J) = ⌦(n�1)
and guar(J) = O(n�1/5).

• For any truthful-in-expectation mechanism J :
guar(J) = O(n�1/5).

• For any ordinal mechanism J : guar(J) = O(n�1).

The first three results apply to mechanisms that may be car-
dinal mechanisms. As a result of our general bounds, we also
get asymptotically tight bounds of ⇥(n�1) for RSD and PS.
As a result of our general bounds for envy-free mechanisms,
we obtain bounds for well-known envy-free mechanisms such
as competitive equilibrium with equal incomes (CEEI) [39]
and the pseudo-market mechanism [23]. Since a random as-
signment of indivisible objects can also be interpreted as a
fractional assignment of divisible objects, our results apply
as well to fair allocation of divisible objects.

1The original definition of RSD is for n agents and n objects;
the definition here is a straightforward adaptation for n <
m.

The constructions that provide the upper bounds for the
guar values can be considered as extreme examples that
may not be common in real-life scenarios. In order to better
understand how the mechanisms may perform in practice,
we consider the approximation ratio achieved by RSD and
PS. We also examine the e↵ect of imposing the envy-freeness
constraint. We generate ordinal profiles via a Mallows model
for di↵erent levels of dispersion � from a common reference
ranking of objects, assigning cardinal utilities via the Borda
and exponential scoring functions. Sweeping � from 0, where
all agents have the same preference, to 1.0, where all prefer-
ence orders are equally likely (the Impartial Culture), allows
us to make statements regarding situations where agent pref-
erences are more or less correlated. We make the following
observations.

• There is a negligible di↵erence between the minimum
and average achievable approximation ratios for PS
and RSD under Borda utilities. While PS performs
slightly better than RSD when agents have more ex-
treme (exponential) utilities, both mechanisms per-
form strictly worse when agents’ valuations are more
similar, as they are under Borda utilities.

• When we require envy-freeness (as in OEEF) with
exponential utilities, as � increases towards 1.0 (i.e.
Impartial Culture) the achievable approximation ratio
first decreases slightly and then increases. Hence, as
agents value more disparate objects highly, satisfying
envy-freeness does not impose as sti↵ a penalty on the
achievable approximation ratio.

• In our experiments, the requirement of envy-freeness
as a constraint in itself (as in the OEEF mechanism)
does not have a large impact on the OEV. However,
since PS returns an SD envy-free (envy-free for all car-
dinal utilities consistent with the ordinal preferences)
allocation, its achievable approximation ratio is strictly
less than OEEF.

1.2 Related work
The assignment problem has been in the center of atten-

tion in recent years in both computer science and economics
[12, 20, 21]. Often, in the classical assignment literature,
agents are assumed to have an underlying cardinal utility
preference structure, even if they are not asked to report it
explicitly. On the other hand, there are many examples of
well-known cardinal mechanisms, such the pseudo-market
(PM) mechanism of Hylland and Zeckhauser [23] and the
competitive equilibrium with equal incomes (CEEI) mech-
anism [39]. Both mechanisms return allocations that are
envy-free in expectation. The two prominent ordinal mech-
anisms in the literature are the probabilistic serial mecha-
nism (PS) [9, 13, 38] and random serial dictator (RSD), a
folklore mechanism that pre-existed the formulation of the
assignment problem in [23]. Later, Che and Kojima [13] pro-
posed a variant of PS called multi-unit eating probabilistic
serial (MPS) that was formalised and axiomatically studied
by Aziz [2].

The egalitarian welfare has received considerable interest
within the computer science literature, especially for allo-
cation of discrete objects in a deterministic manner. The
problem is also referred to as the Santa Claus problem in
which the goal is to compute an assignment which maxi-
mizes the utility of the agent that gets the least utility [1, 6].



For deterministic settings, Demko and Hill [16] proved that
the problem is NP-hard. On the other hand, for random-
ized/fractional allocations, the problem can be solved via
a linear program.2 Recently, another fairness constraint
that has been considered is the maxmin fair share [11, 35].
The notion coincides with proportionality in the context of
randomized/fractional allocations and hence is weaker than
OEV.

Another popular objective is the maximization of the util-
itarian welfare, i.e. the sum of agents’ valuations for an as-
signment. Filos-Ratsikas et al. [18] proved that RSD guar-
antees ⌦(n�1/2) of the total utilitarian welfare if the utili-
ties are normalized to sum up to one for each agent, which
is asymptotically optimal among all randomized truthful
mechanisms. In a recent paper, Christodoulou et al. [14]
proved similar results for the price of anarchy with respect
to the utilitarian welfare of random assignment mechanisms,
including RSD and PS. In this paper, we consider the e↵ect
on approximations of the egalitarian value from strategic
aspects (truthful mechanisms), limited information (ordi-
nal mechanisms), or additional fairness requirements (envy-
free mechanisms). The egalitarian value does not require
the agents’ utilities to be normalized and does not require
agents’ utilities to be added.

Bhalgat et al. [7] determined the approximation ratio of
RSD and PS when the objective is the maximization of a
di↵erent notion, the ordinal social welfare, which is related
to the “popularity” of an assignment [24]. Caragiannis et al.
[12] examined the issue of how much e�ciency loss fairness
requirements like envy-freeness incur but crucially, their ob-
jective is maximization of utilitarian welfare.

2. PRELIMINARIES
An assignment problem is a triple (N,O, v) such that

N = {1, . . . , n} is the set of agents, O = {o1, . . . , om} is
the set of indivisible objects, and v = (v1, . . . , vn) is the val-
uation profile which specifies for each agent i 2 N utility or
valuation function vi where vij or vi(oj) denotes the value
of agent i for object oj . We will denote by V n the set of all
possible valuation profiles.
A fractional or random allocation p is a (n ⇥ m) ma-

trix [p(i)(j)] such that p(i)(j) 2 [0, 1] for all i 2 N , and
oj 2 O. We denote by P the set of all feasible alloca-
tions. The term p(i)(j) which we will also write as p(i)(oj)
represents the probability of object oj being allocated to
agent i. Each row p(i) = (p(i)(1), . . . , p(i)(m)) represents
the allocation of agent i. The set of columns correspond
to the objects o1, . . . , om. We will denote by p̂ the m di-
mensional vector where the j-th entry is

P
i2N p(i)(j) and

denotes the total probability that object j will be allocated
to some agent. The utility of agent i from allocation p is
ui(p(i)) =

P
j2O(p(i)(j))vij . An allocation p is proportional

if for all i 2 N , ui(p(i)) � 1
n
ui(O). An allocation p is envy-

free if for all i, j 2 N , ui(p(i)) � ui(p(j)). An allocation
is SD envy-free if it is envy-free with respect to all cardinal
utilities consistent with the ordinal preferences.3

2Even a lexicographic refinement of the OEV maximizing
allocations (in which the value of the worst o↵ agent, then
the second worst o↵ agent, and so on, are maximized) can
be computed in polynomial time via a series of linear pro-
grams [19].
3SD envy-freeness also applies to cardinal mechanisms e.g.,

We will consider randomized mechanisms that return a
random allocation for each instance of an assignment prob-
lem. Note the connection between random assignments for
indivisible objects and fractional assignments of divisible ob-
jects; a random assignment can be viewed as a fractional
assignment when agents have additive utilities over the ob-
jects. In that sense, we can use well-known mechanisms for
fractional assignments, like the CEEI mechanism, as ran-
domized mechanisms for our setting.

We say that a mechanism is proportional if it always re-
turns a proportional allocation. Similarly, a mechanism is
envy-free if it always returns an envy-free allocation. A
mechanism M is truthful-in-expectation, if for any agent
i 2 N , any valuation profile v = (vi, v�i) and any misreport
v0i of agent i it holds that ui(M(vi, v�i)) � ui(M(v0i, v�i)),
i.e. no agent has any incentive to misreport her true valua-
tion.

Two valuations vi and v0i are ordinally equivalent if they
induce the same ranking over objects, formally vi(oj) �
vi(ok) i↵ v0i(oj) � v0i(ok). A profile v is ordinally equivalent
to profile v0 if for each i 2 N , vi and v0i are ordinally equiv-
alent. A mechanism J is ordinal if for any two preference
profiles v and v0 that are ordinally equivalent, J(v) = J(v0),
i.e., the allocations are the same for any pair of ordinally
equivalent profiles. We now define the main e�ciency mea-
sures that we will examine in the paper.

• The egalitarian value (EV) of an allocation p with re-

spect to valuation profile v is EV (p, v) = inf{ui(p(i))
ui(O) :

i 2 N}.
• For a given valuation profile, the optimal egalitar-

ian value (OEV) is the maximum possible egalitar-
ian value that can be achieved OEV (v) = sup�{9p 2
P : EV (p, v) = �}.

• For a given valuation profile v, an allocation p achieves

approximation ratio EV (p,v)
OEV (v) .

• For a given mechanism J and valuation profile v, we
will say that J achieves approximation ratio aar(J, v)
for valuation v where aar(J, v) is defined as aar(J, v) =
EV (J(v),v)
OEV (v) .

• An allocation rule J guarantees an approximation ra-
tio of guar(J) where guar(J) is defined as guar(J) =
infv2V n{aar(J, v)}.

The guaranteed approximation ratio guar(J) is the worst-
case guarantee over all instances of the problem that we will
be looking to maximize in our theoretical results.

3. THEORETICAL RESULTS
We first note that for a deterministic mechanism J ,

guar(J) = 0; in the worst case, if all the agents only value
the same object then all agents get zero utility except the
agent who gets the valued object. From now on, we will fo-
cus on randomized mechanisms. We start with the following
lemma about proportional mechanisms.

Lemma 1. For any mechanism J that is proportional,
guar(J) � n�1.

one that maximize total welfare subject to SD envy-freeness
constraints.



Proof. If the allocation p is proportional then for each
i 2 N , ui(p(i)) � n�1(ui(O)). Since EV (p, v) �
infi2N (ui(p(i))/(ui(O)) and (ui(p(i))/(ui(O)) � n�1 for all
i 2 N , we get that EV (p, v) � n�1. Since OEV (v)  1,
EV ((p,v))
OEV (v) � n�1.

Since both PS and RSD are proportional [3, 9], we ob-
tain the following guarantee on their approximation ratio:
guar(PS) � n�1 and guar(RSD) � n�1.
A mechanism satisfies the favourite share property if when-
ever all the agents have the same most preferred object then
each agent is assigned to it with probability n�1. We obtain
the following theorem.

Theorem 1. For any mechanism J that satisfies the
favourite share property, guar(J) = O(n�1).

Proof. Consider the following valuation profile with n =
m, where ✏ is an arbitrarily small positive value.

v1(oj) =

(
1, if j = 1

0, otherwise.

For i 2 {2, . . . , n},

vi(oj) =

8
><

>:

0.5 + ✏, if j = 1

0.5� ✏, if j = i

0, otherwise.

Note that OEV is at least 0.5 that can be achieved by
allocating most of o1 to agent 1 and the rest uniformly
to the other agents and the oj completely to agent j for
j 2 {2, . . . , n}. On the other hand, J gives 1/n of o1 to each
of the agents so that agent 1 gets utility 1/n. Since ✏ can be
arbitrarily small, it follows that guar(J) = O(n�1).

We remark here that Theorem 1 holds even if agents have
strict preferences; the utilities can be perturbed slightly
to reflect strict preferences. Since RSD and PS satisfy
the favourite share property as well as proportionality,
guar(RSD) = ⇥(n�1) and guar(PS) = ⇥(n�1).

Theorem 2. For any mechanism J that satisfies SD
envy-freeness, guar(J) = O(n�1).

Proof. SD envy-freeness implies the favourite share
property. If an allocation does not satisfy the favourite share
property, then the agent who gets less than 1/n of his most
preferred object will be envious of another agent if he has
extremely high utility for the object.

In the following, we will prove an upper bound on the ap-
proximation ratio of the OEV for two classes of mechanisms:
envy-free mechanisms and truthful mechanisms. First we
prove the following lemma that states that when looking for
upper bounds on the approximation ratio, it su�ces to only
consider anonymous mechanisms. Similar lemmas have been
proven before in literature [18, 20].

Lemma 2. Let J be a mechanism with approximation ra-
tio ⇢. Then, there exists another mechanism J 0 which is
anonymous and has approximation ratio at least ⇢. Further-
more, if J is truthful or truthful-in-expectation, then J 0 is
truthful-in-expectation and if J is envy-free, J 0 is envy-free.

Proof. Let J 0 be the mechanism that on input valuation
profile v first applies a uniformly random permutation to the
set of agents and then runs mechanism J on v. Obviously,
J 0 is anonymous. Additionally, since v can be an input to J
and the approximation ratio is calculated over all possible
instances, the ratio of J cannot be better than the ratio of J 0.
Finally, since the permutation is independent of valuations,
if J is truthful or truthful-in-expectation, J 0 is truthful-in-
expectation.

Now we state the following theorem, bounding the ap-
proximation ratio of any truthful-in-expectation mecha-
nism. RSD and the uniform mechanism (that gives as-
signment probability of 1/n of each object to each agent)
are strategyproof and ordinal mechanisms that both achieve
a ⇥(n�1) approximation of the OEV. We prove that for
any truthful-in-expectation mechanism J , it holds that
guar(J) = O(n�1/5).

Theorem 3. For any truthful-in-expectation mechanism
J , guar(J) = O(n�1/5).

Proof. Let J be a truthful-in-expectation mechanism;
by Lemma 2, we can assume without loss of generality that
J is anonymous. Consider the following valuation profile v

(summarized in Figure 1) with n = n1 + n1
2 + n

5/2
1 agents

and n1
2 + 1 objects, where ✏ will be defined later:

n1
2 + 1 Objects 1 2 3 4 · · · n2

1 + 1

n1 agents, set A

1 0 0 0 · · · 0
1 0 0 0 · · · 0
...

...
...

...
. . .

...
1 0 0 0 · · · 0

n1
2 agents, set B

1� ✏ ✏ 0 0 · · · 0
1� ✏ 0 ✏ 0 · · · 0
1� ✏ 0 0. ✏ · · · 0
...

...
...

...
. . .

...
1� ✏ 0 0 0 · · · ✏

n1
5
2 agents, set C

0 1 0 0 · · · 0
...

...
...

...
. . .

...
p
n1 agents, set C1

0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
. . .

...
p
n1 agents, set C2

0 0 1 0 · · · 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1
...

...
...

...
. . .

...
p
n1 agents, set Cn2

1

0 0 0 0 · · · 1

Figure 1: Valuation profile v.

• For every agent i 2 A = {1, . . . , n1}, it holds that
vi(1) = 1 and vi(j) = 0 for every object j 6= 1.

• For every agent i 2 B = {n1 + 1, n1
2}, it holds that

vi(1) = 1 � ✏, vi(i � n1 + 1) = ✏ and vi(j) = 0 for all
objects j 2 O\{1, i� n1 + 1}.

• For every ` = 1, . . . , n1
2 and agent i 2 C` = {n1

2 +
(`�1)

p
n1+1, n1

2+ `
p
n1}, it holds that vi(`+1) = 1

and vi(j) = 0 for all objects j 6= `+ 1.

In other words, the instance consists of n1 agents that
have value 1 for the first object (set A) and 0 for everything



else, n1
2 agents that value object 1 at 1 � ✏ and another

object at value ✏ (set B) and n
5/2
1 agents that value a single

object at 1 (set C = [lCl), such that
p
n1 agents value the

object that some agent in the set B has value ✏ for.
Now if we let ✏ = 1/(n1�

p
n1), then the egalitarian value

of the optimal allocation is at least 1/n1; an allocation with
such a value is the following:

• Every agent i 2 A is allocated 1/n1 of object 1.

• Every agent i 2 B is allocated (n1 �
p
n1)/n1) of the

object they value at ✏.

• Every agent i 2 Cl is allocated 1/n1 of object l + 1.

Next consider a family of valuation profiles V, consisting of
profiles where all agents have the same valuations as in v,
except one agent from B that has value 1 for the object that
she had value ✏ in v and 0 for all other objects. Formally,
for ` = 1, . . . , n1

2, we define a profile v` 2 V as follows:

• For every agent i 6= n1 + `, it holds that v`i (j) = vi(j)
for all objects j 2 M .

• For agent n1 + `, it holds that v`n1+`(` + 1) = 1 and

v`n1+`(j) = 0, for all objects j 6= `+ 1.

Consider now any ` and the corresponding valuation profile
v`. Since J is anonymous and agents in C` [ {n1 + `} have
identical valuations and since |C`| =

p
n1, the probability

that agent n1+` is allocated object `+1 is at most 1/(
p
n1+

1) and her utility is hence at most 1/(
p
n1+1). Now consider

valuation profile v and consider the probability p(n1+`)(`+
1) that agent n1+` is allocated object `+1. By truthfulness,
and since vn1+` could be a misreport from v`n1+`, it must
hold that p(n1 + `)(` + 1)  1/(

p
n1 + 1) < 1/

p
n1. This

implies that the contribution to the expected utility of agent
n1 + ` from object `+ 1 is at most ✏/

p
n1, which is at most

1/(n1
p
n1 � n1).

Now consider the probability p(n1 + `)(1) that agent
n1 + ` is allocated object 1. From the arguments above,
if p(n1 + `)(1) < 1/(n1

p
n1 � n1), then the expected utility

of agent n1 + ` is at most 2/(n1
p
n1 � n1) and the ratio is

O(1/
p
n1). Since n = n1 + n1

2 + n
5/2
1 , that would mean

that the theorem is proven. Hence, for J to achieve a better
ratio than O(n�1/5), it has to be the case that for every
` = 1, . . . , n1

2, it holds that p(n1 + `)(1) � 1/(n1
p
n1 �n1).

This is not possible however, since then
Pn1

2

`=1 p(n1+`)(1) �
n1/(

p
n1 � 1) > 1. This completes the proof.

Note that for utilitarian welfare maximization, Filos-
Ratsikas et al. [18] proved that an ordinal mechanism, RSD
achieves the best approximation ratio among all truthful
mechanisms. We conjecture that this is the case for the
maximization of the egalitarian value as well, i.e. for any
truthful mechanism J , guar(J) = O(n�1).

We now turn our attention to envy-free mechanisms. For
this class, we will prove an O(n�1/5) upper bound as well;
the proof actually uses the same valuation profile as the
proof of Theorem 3.

Theorem 4. For any mechanism J that satisfies envy-
freeness, guar(J) = O(n�1/5).

Proof. Consider the valuation profile v used in the proof
of Theorem 3 and again consider the probability p(n1+`)(`+
1) that agent n1 + ` is allocated object ` + 1. Recall the

definition of sets A,B and C from the proof of Theorem 3.
By envy-freeness, it holds that p(n1 + `)(` + 1)  1/(

p
n +

1)  1/
p
n1 otherwise some agent j 2 C` (who only values

object `+ 1) would be envious of agent n1 + `.
The rest of the steps are the same as in the proof of The-

orem 3. Again, consider the probability p(n1 + `)(1) that
agent n1 + ` is allocated object 1. Since p(n1 + `)(1) <
1/(n1

p
n1 � n1), if p(n1 + `)(1) < 1/(n1

p
n1 � n1) then for

the same reasons mentioned in the last paragraph of the
proof of Theorem 3, we are done. Hence, we can assume
that for every ` = 1, . . . , n1

2, it holds that p(n1 + `)(1) �
1/(n1

p
n1 � n1). This is not possible however, since then

Pn1
2

`=1 p(n1 + `)(1) � n1/(
p
n1 � 1) > 1.

From Theorem 4, we obtain the following corollary:
guar(CEEI) = O(n�1/5) and guar(PM) = O(n�1/5).
It would be interesting to provide a better bound for Theo-
rem 4 or show it is optimal, i.e. come up with an envy-free
mechanism that actually achieves the ratio. Finally, we con-
sider the OEV guarantees of ordinal mechanisms.

Theorem 5. For any mechanism J that is ordinal,
guar(J) = O(n�1).

Proof. Consider the setting with n agents and n + 1
objects {o⇤, o0, . . . , on�1}. The preferences are as follows:
each agent values o⇤ the most. Agent 1 has preference order
o⇤, o0, . . . , on�2, on�1. The preference of each agent i 2 N \
{1} over the objects O \ {o⇤} are obtained as follows: take
agent i�1 preference order over O\{o⇤} and move the most
preferred object of i � 1 among O \ {o⇤} to the end of the
preference order for agent i.

1 : o⇤, o0, , . . . , on�2, on�1

2 : o⇤, o1, , . . . , on�1, o0

...

i : o⇤, oi�1, , . . . , on�i+1, oi�2

By Lemma 2, we can assume without loss of generality
that J is anonymous. Furthermore, since J is ordinal, due
to the preference profile, the mechanism cannot di↵erentiate
among the agents even though they may have di↵erent val-
uations over the objects. Assume that there is some agent
that is allocated at most 1/n of the universally most pre-
ferred object o⇤. In this case, consider the scenario where
this agent has utility almost 1 for o⇤ and the other agents i
have utility 0.5+ ✏ for o⇤ and utility 0.5� ✏ for oi�1 where ✏
is an arbitrarily small positive value. In this case, the egali-
tarian value achieved is 1/n whereas the OEV is almost 0.5.
Hence guar(J) = O(1/n).

Since MPS is an ordinal mechanism, it follows that
guar(MPS) = O(n�1).

4. EXPERIMENTAL RESULTS
The results in Section 3 give us worst case bounds on the

guaranteed approximation ratios (guar(J)) for a number of
prominent randomized mechanisms including RSD and PS.
Hence, in this section we present experimental results which
provide a perspective on what may happen “in practice.”
Since PS can be considered as the most e�cient SD envy-
free mechanism (in view of various characterizations [8, 38]),



RSD Min. Achieved Approx. Ratio PS Min. Achieved Approx. Ratio

RSD Mean Achieved Approx. Ratio PS Mean Achieved Approx. Ratio

Figure 2: Minimum (top) and average (bottom) achieved approximation ratio for the RSD (left) and PS
(right) mechanisms with Borda utilities. Observe that both mechanisms perform similarly and significantly
better than the derived guar(J). Both mechanisms are relatively invariant to the level of dispersion in the
underlying valuation profiles. For each n = {1, . . . , 9} the graphs are aggregated over the complete range of
objects (i.e., all m 2 {2, . . . , 9}). For example, the cell (n = 4,� = 0.2) is the minimum (resp. average) achieved
approximation ratio over all instances where m ranges over {1, . . . , 9}.

the results for PS can also be viewed as the e↵ect of enforc-
ing SD envy-freeness. In order to test the quality of RSD
and PS we need to generate both preferences and cardinal
utilities for the agents. There are a number of generative
statistical cultures that are commonly used to generate or-
dinal preferences over objects and the choice of model can
have significant impact on the outcome of an experimental
study (see e.g. [33]).

Since our focus is fairness, and fairness is often hard
to achieve when agents have similar valuations, we em-
ploy the Mallows model [29] and use the generator from
www.preflib.org [31] in our study. Mallows models are
often used in machine learning and preference handling as
they allow us to easily control the correlation between the
preferences of the agents; a common phenomenon in prefer-
ence data [31, 30, 28]. A Mallows model has two parameters:
(1) aReference Order (�), the preference order at the cen-
ter of the distribution, and (2) a Dispersion Parameter
(�), the variance in the distribution which controls the level
of similarity of the agent preference orders. When � = 0 all
agents have the same ordinal preference; when � = 1 then
the ordinal preferences are drawn uniformly at random from
the space of all preference orders.

Formally, the probability of observing an ordering r is in-
versely proportional to the Kendall Tau distance between �
and r. This probability is weighted by �, which allows us
to control the shape of the distribution. For a given ordinal
preference, we superimpose cardinal utilities for the agents
using two well-established scoring functions: (1) Borda
Utilities, each agent has valuation of m� i for his i-th pre-
ferred object, and (2) Exponential Utilities, each agent
has valuation of 2m�i for his i-th preferred object.

In our experiments we generate 10,000 valuation profiles
(instances) for each combination of parameters with the
number of agents n 2 {2, . . . , 9}, number of objects m 2
{2, . . . , 9}, and dispersion parameter � 2 {0.0, 0.1, . . . , 1.0}.
We draw � i.i.d. for each instance.

4.1 Experiments: The Performance of RSD
and PS

For each instance v generated, and each mechanism J ,
we examined the achieved approximation ratio, aar(J, v) =
EV (J(v),v)
OEV (v) , of the RSD and PS mechanisms. Among all such

values computed, we examined the minimum and average ra-
tio achieved for a given set of parameters. The results of our
experiments for Borda Utilities are shown in Figure 2 while
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Figure 3: Minimum (top) and average (bottom) achieved approximation ratio for the RSD (left) and PS
(right) mechanism with exponential utilities. For each n = {1, . . . , 9} these graphs are aggregated over the
complete range of objects (i.e., all m 2 {2, . . . , 9}). For example, the cell (n = 4,� = 0.2) is the minimum (resp.
average) approximation ratio achieved over all instances where m ranges over {1, . . . , 9}.

the results for exponential utilities are shown in Figure 3.
All our figures are aggregations over all values of m for par-
ticular combinations of n and �. Note that since aar(J, v)
is normalized over the total utility we can aggregate these
terms as it is invariant to this scaling. This allows us to
draw more general conclusions as we range over the number
of agents and objects. Empirically we found that increasing
the number of agents has a greater impact on the approxima-
tion performance of the mechanisms compared to an increase
in the number of objects, hence the decision to aggregate the
graphs in the manner chosen. This empirical result is in line
with our theoretical results showing that the worst case ap-
proximation ratio is a function of n. The results for both
mechanisms for Borda utilities strictly dominate the results
in Figure 3. Hence, we observe that the achieved approxima-
tion ratio is better for Borda utilities than for exponential
utilities.

When � = 0.0 (not shown in our graphs), the achieved ap-
proximation ratio is 1 for both PS and RSD. Both of these
mechanisms return the uniform allocation, assigning prob-
ability of 1/n for each object to each agent, when all the
agents have identical preferences. In general, sweeping the
value of � from completely correlated to completely uncorre-
lated preferences has little impact on the overall achievable

approximation ratio, though for both models the achievable
approximation ratio did strictly decrease as we increased �.
The impact of changing � was strictly greater for the expo-
nential utility model than it was for the Borda utility model,
highlighting again that, as the di↵erence between the valua-
tions of the objects grows large, it becomes harder to achieve
fair allocations.

There appears to be almost no di↵erence between the min-
imum and average ratios for PS and RSD under Borda util-
ities. Furthermore, these ratios appear to be very high com-
pared to our theoretical results. Finally, PS consistently
performs slightly better than RSD for the minimum and av-
erage ratios under exponential utilities and on par with RSD
for Borda utilities. This provides more empirical support to
the argument that PS is superior to RSD in terms of fairness.

4.2 Experiments: The Effect of Envy-freeness
In order to evaluate the e↵ect that envy-freeness has on

the allocations we turn to the OEEF mechanism. To un-
derstand the worst case e↵ects of adding envy-freeness as
a hard constraint has on small instances we exhaustively
tested the parameter space with agents n 2 {2, . . . , 6}, num-
ber of objects m 2 {3, 4} under Borda and exponential util-
ities. In this entire parameter space, the worse case achiev-
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Figure 4: Minimum achieved approximation ratio when we enforce envy-freeness as a hard constraint. For
each n = {1, . . . , 9} these graphs are aggregated over the complete range of objects (i.e., all m 2 {2, . . . , 9}).
For example, the cell (n = 4,� = 0.2) is the minimum (resp. average) approximation ratio achieved over all
instances where m ranges over {1, . . . , 9}.

able approximation ratio was 0.87, significantly higher than
the theoretical worst case. This shows that for smaller in-
stances and some standard utility models, the requirement
of envy-freeness does not have a significant negative impact
on the achievable approximation ratio. To get an under-
standing of the performance of OEEF in a larger param-
eter space we repeated the experiments from the previous
section here, evaluating the performance of OEEF across a
large parameter space with number of agents n 2 {2, . . . , 9},
number of objects m 2 {2, . . . , 9}, and dispersion parame-
ter � 2 {0.0, 0.1, . . . , 1.0}. The results of these tests, again
aggregated by m and �, are shown in Figure 4.
When agents have exponential utilities, the achieved ap-

proximation ratio, much like in the last section, is strictly
worse. Additionally, when we have exponential utilities, as
� increases, the approximation ratio for the envy-free mech-
anisms first decreases slightly and then increases for higher
number of agents. Since � = 1.0 means that agents prefer-
ences are drawn uniformly at random, it is more likely that
each agent has high valuation for di↵erent objects. Hence, as
the preferences move from concentrated to dispersed, there
seems to be an interesting transition from high to low and
back to high in terms of the achievable approximation ra-
tio. As in the previous subsection, we observe that when
all agents have the same preferences, the uniform allocation
is both envy-free and has maximal achieved approximation
ratio. Hence, when � = 0, the ratio is 1.0 (not shown in
Figure 4). We note that RSD performs much more poorly
across the board compared to OEEF. The results in Fig-
ure 4 strictly dominate the results for PS. Hence, SD envy-
freeness that is satisfied by PS has a significant impact on
the achieved approximation ratio.

5. CONCLUSION
We present theoretical and experimental results concern-

ing how well di↵erent randomized mechanisms approximate
the optimal egalitarian value. It has been well-known that
egalitarianism can be incompatible with envy-free or truth-
fulness. In this paper, we quantified how much egalitar-
ianism is a↵ected by such properties. In a recent paper,

Christodoulou et al. [14] proved results for the utilitarian
welfare of the Nash equilibria of assignment mechanisms. It
will be interesting to adopt a similar approach with respect
to the egalitarian value and study the price of anarchy of
randomized mechanisms with respect to that objective. To
conclude, we mention an open problem: what is the best
OEV approximation guaranteed by truthful mechanisms?

REFERENCES
[1] A. Asadpour and A. Saberi. An approximation algo-

rithm for max-min fair allocation of indivisible goods.
SIAM Journal on Computing, 39(7):2970–2989, 2010.

[2] H. Aziz. Random assignment with multi-unit demands.
Technical Report 1401.7700, arXiv.org, 2014.

[3] H. Aziz and C. Ye. Cake cutting algorithms for piece-
wise constant and piecewise uniform valuations. In
Proc. of 10th WINE, pages 1–14, 2014.

[4] H. Aziz, F. Brandt, and M. Brill. The computational
complexity of random serial dictatorship. Economics
Letters, 121(3):341–345, 2013.

[5] H. Aziz, S. Gaspers, S. Mackenzie, and T. Walsh. Fair
assignment of indivisible objects under ordinal pref-
erences. In Proc. of 13th AAMAS Conference, pages
1305–1312, 2014.
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ABSTRACT
We study a dynamic social choice problem in which an alternative
is chosen at each round according to the reported valuations of a set
of agents. In the interests of obtaining a solution that is both effi-
cient and fair, we aim to maximize the Nash social welfare, which
is the product of all agents’ utilities. We present three novel rules
and discuss some of their properties. Two are greedy algorithms
and the third attempts to explicitly learn the distribution over in-
puts, updating its decisions by solving a convex program at each
round. We also take a more generally applicable algorithm from
existing literature and apply it to our problem. Finally, we compare
all four algorithms against the offline optimal solution in simula-
tions.

1. INTRODUCTION
Fairness is a topic of rapidly increasing interest in social choice.

On the one hand, there has been much recent interest in the fair allo-
cation of resources—cake cutting [25] as well as other models [14,
22]. On the other hand, in voting, fairness considerations have re-
ceived attention in selecting a committee of candidates, in the form
of a focus on the voters being represented in the committee [10, 20,
8].

A classical approach to obtaining a fair outcome in a context
where agents have utility functions is to maximize the Nash so-
cial welfare [21], which is the product of the agents’ utilities. One
attractive feature of using the Nash social welfare is scale invari-
ance: if an agent doubles all her utilities (or, equivalently, changes
the units in which she expresses her utilities), this does not change
which outcomes maximize the objective.

In life, it is often difficult to make a completely fair decision in
a single-shot context; often, every option will leave some agents
unhappy. Fortunately, we can often address this over time—we
will go to my most preferred restaurant today, and to yours next
week. Achieving fairness over time is the topic of our paper. Ours
is certainly not the first work to consider fairness or social choice
in dynamic settings; see, for example, [24, 16, 6].

When we make multiple decisions over time, we could simply
maximize the Nash welfare in each round separately. But it is easy
to see that this can lead to dominated outcomes. For example, sup-
pose there are two agents, and we can choose an alternative that
gives one a reward of 3, and the other a reward of 0; or vice versa;

Appears at: 3rd Workshop on Exploring Beyond the Worst Case in Com-
putational Social Choice. Held as part of the 15th International Conference
on Autonomous Agents and Multiagent Systems. May 9th-10th, 2016. Sin-
gapore.

or an alternative that gives each of them 1. Within a round, the last
alternative maximizes Nash welfare; but if this scenario is repeated
every round, then it would be better to alternate between the first
two alternatives, so that each agent obtains 1.5 per round on aver-
age. Of course, initially, say in the first round, we may not realize
we will have these options every round, and so we may choose the
last alternative; but if we do have these options every round, we
should eventually catch on to this pattern and start alternating. Ide-
ally, we would maximize the long-term Nash welfare, that is, the
product of the long-run utilities (which are the sums of each agent’s
rewards), rather than, for example, the sum of the products within
the rounds. Of course, if there is uncertainty about the options that
we will have in future rounds, we cannot expect to get the same
Nash welfare that we could obtain with perfect foresight. For ex-
ample, we may choose to make an agent happy this round, and then
later realize that in typical rounds, this agent is very easy to make
happy and we should have focused our efforts on an agent that is
more difficult to make happy. While such scenarios are inevitable,
we do want to adapt and learn over time and thereby approximate
the ideal Nash welfare.

In this work, we do not focus primarily on strategic concerns
(though we discuss this in more detail in Section 7). Of course it
is fairly common to ignore strategic concerns in the social choice
literature, but we do think this is an important topic for future work.
On the other hand, there are also important contexts where strategic
concerns do not come into play. For example, instead of consider-
ing a setting where there are multiple agents that have different
utility functions, we can consider a setting where there are multiple
objectives that each alternative contributes towards. For example,
consider faculty hiring. Suppose the three objectives that we want
our faculty hires to contribute to are research, teaching, and ser-
vice; moreover, suppose that at the time of hiring we can predict
well how much each candidate would contribute to each of these
objectives, if hired. Then, it stands to reason that, one year, we
may hire a top researcher that we do not expect to contribute much
to our teaching or service objectives. But we would be loath to
make such a decision every year; having hired a few top researchers
who are not good at teaching or service, pressure will mount to ad-
dress needs in the latter two. This fits well into our framework,
if we simply treat each of the three objectives as an agent that is
“happy” with an alternative to the extent to which it addresses the
corresponding objective. In particular, note that the fact that objec-
tives are measured in incomparable units – for example, we might
measure research crudely by number of top-tier publications, and
teaching crudely by course evalation scores – poses no problem
to our methodology, since this methodology can anyway address
agents measuring their utilities in different units. (Since we are not
in a setting with a numeraire, there is no reason their utilities should



have similar units.) Thus, a reader who insists on game-theoretic
modeling in the case of agents with utility functions may instead
substitute this modified interpretation of addressing multiple ob-
jectives everywhere in our paper.

The rest of the paper is organized as follows. In Section 2 we
introduce notation and preliminaries. In Section 3 we present two
simple greedy algorithms for choosing alternatives, and provide in-
tuitive interpretations of them. We make a computational distinc-
tion between them and provide an axiomatic justification for one
of them. In Section 4 we present an algorithm which can be seen
as an approximation to the optimal solution when T is infinite. In
Section 5 we present an existing algorithm designed for a more
general class of stochastic optimization problems with good regret
guaranatees.

After presenting the algorithms, we evaluate them on simulated
data in Section 6. Finally, in Section 7 we discuss some strategic
considerations in the repeated setting, and in Section 8 we discuss
specific applications of our methodology, including to voting.

Related work: Parkes and Procaccia [24] examine a similar
problem by modeling agents’ evolving preferences with Markov
Decision Processes, with a reward function defined over states and
actions (alternatives). However, their goal is to maximize the sum
of (discounted) rewards and they do not explicitly consider fairness
as an objective. Kash, Procaccia and Shah [16] examine a model of
dynamic fair division where agents arrive at different points in time
and must be allocated resources; however, they do not allow for
the preferences of agents to change over time as we do. A recent
paper by Aleksandrov et al. [6] considers an online fair division
problem in a setting where items appear one at a time, and agents
declare yes/no preferences over that item. In our setting, each round
has many alternatives and we allow agents to express more general
utilities. Our work is related to the literature on dynamic mecha-
nism design (see, e.g., [23] for an overview), except that we do not
consider monetary transfers. Guo, Conitzer and Reeves [15] con-
sider a setting similar to ours, also without money, except that they
are not explicitly interested in fairness, only welfare, and focus on
incentive compatibility.

2. PRELIMINARIES
Consider a set of n agents and let A be a set of m possible al-

ternatives.1 At every round t = 1, . . . , T , agents report their val-
uation for every alternative. In this paper we allow the valuations
to be integers in the range 0 to K for some finite K (therefore we
can achieve arbitrarily fine granularity by allowing K to be large).
Thus the input at every round is a matrix Vt 2 Zn⇥m

�0,K . For ev-
ery round t, a Dynamic Social Choice Function (DSCF) chooses a
single alternative, corresponding to a column of Vt, which we de-
note by vt. Importantly, the problem is online, so we may only use
information up to time t in order to choose vt.

The valuation of agent i for the alternative j at time t is Vt(i, j),
and at each round we can think of an agent’s valuation vector,
Vt(i, ·), as their reported valuation for each alternative. Although
the columns of Vt are formally indexed by alternatives, we will of-
ten refer to the vector V (·, j) simply as j when there is no risk of
confusion. Thus the valuation of agent i for alternative vt will be
denoted by vt(i). We define a vector of accrued rewards at round
t, ut, where the accrued reward of agent i at round t is the sum of
agent i’s valuations for the chosen alternatives up to and including

1For simplicity of presentation, we define the set of alternatives to
be static. However, all of our algorithms and results hold if the set
of alternatives, and even the number of alternatives, changes from
round to round.

round t, ut(i) =

Pt
t0=1

vt0(i). We will most often be interested
in an agent’s accrued reward before the start of round t, ut�1

(i).
The average utility of the agents over the first t rounds is given by
vave
t =

1

t
ut.

A DSCF is anonymous if applying permutation � to the rows of
Vt, for all t, does not change the chosen alternative vt, for any t.
A DSCF is neutral if applying permutation � to the columns of Vt,
for all t, results in choosing alternative �(vt) for all t. For the rest
of this paper we only consider anonymous, neutral DSCFs.

The DSCFs that we discuss are presented in a way that natu-
rally allows ties between alternatives. We think of the mechanisms
choosing a set of possible alternatives, and then choosing a single
alternative from the set arbitrarily.

The Nash social welfare (NSW) of utility vector v, NSW (v), is
defined to be the product of the agents’ utilities,

NSW (v) =

nY

i=1

v(i). (1)

The NSW is frequently used as an objective in the fair division
literature as it strikes a balance between maximizing efficiency and
fairness (for recent examples in the computer science literature, see
[11, 13, 26]). One further nice property of NSW is that it is scale-
free, meaning that the optimal choice of alternative is unchanged
if some agent(s) report valuations on different scales from others.
Our aim is to maximize the NSW of the average utility across all
T rounds, NSW (vaveT ). Some of our algorithms involve the use
of convex programming, which requires a concave objective func-
tion to maximize. Unfortunately, NSW is not a concave function,
however ln(NSW ) is. Thus, we will interchangeably talk about
maximizing

ln(NSW (vave
t )) = ln

 
nY

i=1

vave
t (i)

!
=

nX

i=1

ln(vave
t (i)).

Since ln is an increasing function, the solution maximizing
lnNSW (v) is the same as the solution maximizing NSW (v).

The benchmark algorithm is the opfimal offline algorithm, where
an offline instance of the problem is given by the set of matrices
{Vt}t2{1,...,T}. The offline problem can be solved via the follow-
ing mixed integer convex program:

Maximize
nX

i=1

ln

 
TX

t=1

mX

j=1

xtjVt(i, j)

!
(2)

subject to
mX

j=1

xtj = 1 8t, xtj 2 {0, 1} 8t, j

where xtj is a binary variable denoting whether or not alternative j
is chosen at time t. The constraint simply says that for each t, we
must choose exactly one alternative. We denote the optimal value
achieved by convex program 2 by OPT (thus the optimal Nash so-
cial welfare is eOPT ).

3. GREEDY ALGORITHMS
In this section we present two simple greedy algorithms.

The first algorithm, GREEDY, simply chooses vt to maximize
NSW (vavet ). The other, LINEARGREEDY, is a linear version of
GREEDY which assigns each agent a weight wi equal to the inverse
of their accrued utility at the start of each round and simply chooses
vt = argmaxv2Vt

w · v. The advantage of these algorithms lies in
their simplicity to understand and execute.



One challenge that these algorithms face is that in the early
rounds it may not be possible to give all agents non-zero utility.
Therefore it may be the case that u(vavet ) = 0 for all choices of
vt, even when one allocation is clearly better than all others. We
address this by allocating some small ‘hallucinated’ utility to those
agents with zero accrued reward (not necessarily the same to each
agent), which is removed once the agent accrues some positive re-
ward. The algorithms are shown as Algorithms 1 and 2. For Algo-
rithm 1, let the parameter x be such that 0 < x < 1

2

n
(K+1)

n(n+1) .

Algorithm 1 GREEDY

1: for i = 1, . . . , n do
2: Set x  ✏i  2(K + 1)

n�1x
3: end for
4: Initialize u

0

= (0, . . . , 0)
5: for t = 1, . . . , T do
6: Choose vt 2 argmaxv2Vt

Qn
i=1

(max{ut�1

(i) +

v(i), ✏i})
7: ut = ut�1

+ vt
8: end for

Algorithm 2 LINEARGREEDY

1: for i = 1, . . . , n do
2: Set 0 < �i <

1

nK
3: end for
4: Initialize u

0

= (0, . . . , 0)
5: for t = 1, . . . , T do
6: Set wi =

1

max{�i,ut�1(i)}
for all i

7: Choose vt 2 argmaxv2Vt
w · v

8: ut = ut�1

+ vt
9: end for

We first state a lemma which follows easily from the choice of
✏i.

LEMMA 3.1. For all j, k such that 1  k < k+ j  n, and all
sets of agents I and I 0, of size k + j and k respectively,

(K + 1)

n�k�j
Y

i2I

✏i <
Y

i02I0

✏i0 .

PROOF. Let 1  k < k + j  n. Let I = {i
1

, . . . , ik+j}
and I 0 = {i0

1

, . . . , i0k}. Recall that 0 < x < 1

2

n
(K+1)

n(n+1) and
x  ✏i  2(K + 1)

n�1x for all i. Then

(K + 1)

n�k�j
Y

i2I

✏i  (K + 1)

n�k�j
(2(K + 1)

n�1x)k+j

< xk
(K + 1)

n�k�j
(2(K + 1)

n�1

)

k+j ·
✓

1

2

n
(K + 1)

n(n+1)

◆j

 xk 2
n
(K + 1)

(k+j+1)n�2k�2j

(2

n
(K + 1)

n(n+1)

)

j

 xk 2
n
(K + 1)

(k+j+1)n�2k�2j

2

n
(K + 1)

n(n+1)

< xk (K + 1)

n(k+j+1)

(K + 1)

n(n+1)

 xk


Y

i02I0

✏i0

We next state a simple interpretation of GREEDY. Let
NSW+

(v) be the product of all non-zero entries in v.

PROPOSITION 3.2. At every round, GREEDY selects an alter-
native to maximize the number of agents with ut(i) > 0. Sub-
ject to this condition, and holding fixed the set of agents with
non-zero utility, GREEDY chooses an alternative which maximizes
NSW+

(vavet ).

PROOF. Consider the action of GREEDY at round t. Suppose
first that all agents have ut�1

(i) > 0. Then the first condition
in the proposition statement is vacuous; all choices maximize the
number of agents with ut(i) > 0. Since ✏i < 1 for all i, the choice
at Line 6 is precisely to maximize NSW (vavet ) = NSW+

(vavet ).
Now suppose that ut�1

(i) = 0 for some agent i, and consider
two alternatives v0 and v. Suppose that |I 0 = {i : ut�1

(i) +
v0(i) = 0}| = k and |I = {i : ut�1

(i) + v(i) = 0}| = k + j >
k. To show that GREEDY maximizes the number of agents with
ut(i) > 0, it suffices to show that the product in Line 6 is larger
when v0 is chosen than when v is chosen.

We consider the case in which the produc tin Line 6 is greatest
for v (compared to v0). In particular, all n�k agents with ut�1

(i)+
v0(i) > 0 have ut�1

(i) + v0(i) = 1, and all n� k� j agents with
ut�1

(i) + v(i) > 0 have ut�1

(i) + v(i) = K + 1 (if ut�1

(i) +
v(i) > K + 1 then ut�1

(i) + v0(i) � ut�1

(i) > 1, since no
single-round valuation is greater than K). Then the product on
Line 6 for v0 is

Q
i02I0 ✏i0 , and for v is (K + 1)

n�k�j Q
i2I ✏i.

By Lemma 3.1, the former is greater than the latter, and GREEDY
chooses v0, thus minimizing the number of agents with ut(i) = 0.

Finally, suppose that GREEDY chooses vt when there exists an-
other alternative v which results in the same set of agents with
ut(i) > 0 (call this set of agents I), and NSW+

(ut�1

+ vt) <
NSW+

(ut�1

+ v). Then, by definition of NSW+,
Y

i2I

(ut�1

(i) + vt(i)) <
Y

i2I

(ut�1

(i) + v(i))

()
Y

i2I

(ut�1

(i) + vt(i))
Y

i/2I

✏i <
Y

i2I

(ut�1

(i) + v(i))
Y

i/2I

✏i

()
nY

i=1

max{(ut�1

(i) + vt(i)), ✏i} <
nY

i=1

max{(ut�1

(i) + v(i)), ✏i},

which contradicts the choice of vt.

Indeed, we can show that every alternative not ruled out by The-
orem 3.2 can be chosen by GREEDY, for some choice of {✏i}.

THEOREM 3.3. Suppose alternative a maximizes the number of
agents with ut(i) > 0. Suppose further that for all j such that
choosing j results in the same set of agents with non-zero accrued
reward, NSW+

(ut�1

+ Vt(·, j))  NSW+

(ut�1

+ Vt(·, a)).
Then a is chosen by GREEDY for some choice of {✏i}.

PROOF. Let a 2 Vt satisfy the conditions of the theorem state-
ment. We exhibit a set of {✏i} such that a is chosen by GREEDY.
Let I be the set of agents with non-zero accrued reward after choos-
ing a. Then let ✏i = x (the same x as in Line 2 of Algorithm 1) for
all i 2 I , and ✏i0 = 2(K + 1)

n�1x for all i0 /2 I . Consider some
alternative j that also maximizes the number of agents with non-
zero accrued reward (since otherwise, by Proposition 3.2, it would
certainly not be chosen by GREEDY), and denote by J the set of
agents given non-zero accrued utility after choosing j.

Suppose that J 6= I . By assumption, |J | = |I|. Therefore
|I\J | = |J\I|. Let us consider the contribution of all agents to the



product in Line 6 of Algorithm 1 for alternatives j and a. There are
four types of agent to consider:

1. An agent i 2 I\J . These are agents for which ut�1

(i) = 0,
with Vt(i, a) � 1 and Vt(i, j) = 0. Therefore each of these
agents contributes a factor of at least 1 to the product for a
and ✏i = x to the product for j.

2. An agent i 2 I \ J . These are agents for which the choice
of either a or j both result in ut(i) > 0. In the worst case
for a (relative to j), ut�1

(i) = 1 with Vt(i, a) = 0 and
Vt(i, j) = K. That is, each of these agents contributes a
factor of at least 1 to the product for a and at most K + 1 to
the product for j.

3. An agent i 2 J\I . These are agents for which ut�1

(i) = 0,
with Vt(i, a) = 0 and Vt(i, j) � 1. Each of these agents
contributes a factor of ✏i = 2(K+1)

n�1x to the product for
a and at most K to the product for j.

4. An agent i /2 I [J . These are agents for which the choice of
either a or j both result in ut(i) = 0. Thus they contribute
exactly the same factor to the product for both a and j.

Let us write down the product from Line 6 for a (not counting
the agents of type 4 which make the same contribution to both). It
is at least:

(2(K + 1)

n�1x)|J\I|
= (2(K + 1)

n�1x)|I\J| (3)

The product for j (not counting the agents of type 4 which make
the same contribution to both) is at most:

x|I\J| · (K + 1)

|I\J| ·K|J\I|  x|I\J| · (K + 1)

|I\J| · (K + 1)

|J\I|

= x|I\J| · (K + 1)

|I\J| · (K + 1)

|I\J|

(4)

Noting that |I\J |+ |I\J |  n�1 (since |I\J |+2|I\J |  n
and I\J is nonempty), it is clear that expression 3 is greater than
expression 4. Therefore the product in Line 6 is higher for a than
for j.

Finally, suppose that J = I . Then, by the condition of the the-
orem, NSW+

(ut�1

+ j)  NSW+

(ut�1

+ a), which implies
that choosing a results in a weakly higher product in Line 6 than
choosing j.

Therefore a is chosen by GREEDY, since all other alternatives
which maximize the number of agents with non-zero accrued re-
ward after round t have been ruled out, given our particular choice
of ✏.

Unlike GREEDY, LINEARGREEDY may leave some agents with
zero utility even when it was possible to give positive utility to all
agents.

EXAMPLE 3.4. Let n = 2, m = 3, and suppose that V
1

=

(

3 0 1

0 3 1

). The columns represent alternatives a
1

, a
2

, and a
3

respec-
tively, and the rows represent agents i

1

and i
2

respectively.
For any choice of 0 < ✏

1

, ✏
2

<< 1, GREEDY chooses a
3

since
3✏i < 1. However, LINEARGREEDY assigns the agents weights
w

1

, w
2

and chooses argmaxv2{a1,a2,a3} w · v. Since it must be
the case that either 3w

1

> w
1

+ w
2

or that 3w
2

> w
1

+ w
2

, it is
not possible for a

3

to be chosen by LINEARGREEDY even though
it is the only alternative which gives both agents positive utility.

We can, however, provide a weaker guarantee for LINEAR-
GREEDY.

PROPOSITION 3.5. LINEARGREEDY always chooses an alter-
native vt with vt(i) > 0 for at least one agent i with ut�1

(i) = 0,
if such an alternative exists.

PROOF. Let i be an agent with ut�1

(i) = 0 and v be an al-
ternative with v(i) � 1. Then the weight assigned to i at round
t by LINEARGREEDY is wi =

1

�i
� nK, and the dot product in

Line 7 of Algorithm 2 is at least nK. Suppose for contradiction
that LINEARGREEDY chooses an alternative v0 such that v0(i) > 0

only for agents with ut�1

(i) > 0. The weight of each such agent
is 1

ut�1(i)
 1

1

= 1, and v0(i)  K, thus the dot product in Line 7
is at most (n � 1)K < nK. Thus v0 is not chosen by LINEAR-
GREEDY.

3.1 Computational Considerations
Clearly, when the number of allocations, m, is not too large, the

outcome of both GREEDY and LINEARGREEDY can be computed
efficiently. However, consider a setting in which every round is a
combinatorial allocation problem, so the number of alternatives is
exponential in the number of items being allocated. For instance,
if every round is an allocation of food bank items [6] to differ-
ent charities then we will have substitutes and complements which
must be taken into account, thus charities have preferences over
subsets of items, not just items themselves. In this setting, comput-
ing the chosen alternative under GREEDY is weakly NP-hard even
in a very restricted case.

PROPOSITION 3.6. Computing the chosen alternative vt under
GREEDY is weakly NP-hard, even when there are only two agents
and each has additive valuations over the items.

PROOF. Suppose there are two agents with the same valuation
over the items in the first round. Then the allocation under GREEDY
is to allocate each agent an equal share of the items according to
their common valuation (or as close to equal as possible). This is
exactly an instance of PARTITION, which is weakly NP-hard.

Note that for the LINEARGREEDY algorithm, computing the
chosen alternative is equivalent to the combinatorial auction win-
ner determination (CAWD) problem, which has been studied ex-
tensively [27, 7, 18]. Thus, the outcome under LINEARGREEDY
can be computed efficiently under exactly the same conditions as
the CAWD problem.2 Even in those cases where LINEARGREEDY
can not be computed efficiently, we can use any existing algorithm
for the CAWD problem.

3.2 Axiomatization of LINEARGREEDY

It is possible to simply consider LINEARGREEDY an approxi-
mation to GREEDY. However, in this section we provide an ax-
iomatization of the LINEARGREEDY mechanism which provides
some justification for seeing it as a worthwhile rule in and of itself,
without needing to appeal to its approximation of GREEDY.

A DSCF is scale-free if it is not affected by a uniform (multi-
plicative) scaling of some agent’s valuations. This property is de-
sirable because it means we do not require any sort of agreement or
synchronization as to the units of measurement used by the agents
in their reporting.

DEFINITION 3.7. Let c > 0. Say that a DSCF satisfies scale-
free-ness (SF) if the chosen alternative at round t is still among the
set of (possible) chosen alternatives if we replace v(i) by c · v(i)
for all v 2 Vt for every t = 1, . . . , T .
2For example, when agents have preferences over bundles of size
at most 2, the problem is in P.



LEMMA 3.8. LINEARGREEDY satisfies SF.
PROOF. Suppose that agent i scales all their valuations by c >

0. We show by induction that there exists some choice of � such that
LINEARGREEDY still chooses the same alternative at each round as
it did before the scaling.

Consider the first round, t = 1. Let �0 denote the vector of
hallucinated utilities chosen before the scaling. When i scales their
valuations by factor c, simply set �i = c · �0i,3 and deltaj = delta0

j

for all j 6= i. Thus the weight of i is scaled by 1

c
, so the value of

w ·v is unchanged for all v 2 Vt, and the same alternative is chosen
at round 1.

Now consider round t > 1, and suppose that the same alterna-
tives are chosen for all rounds before t. In particular, the accrued
utility of all agents i0 6= i (or, in the case that i0 has zero accrued
utility, then the value of �i) is the same as before the scaling, so
their weights have not changed. But the accrued utility of i has
scaled by a factor of c, since i’s valuation for every alternative at
every round is scaled by c (and, in the case that i has zero accrued
utility, we still have that �i = c ·�0i), so that the weight of i is scaled
by 1

c
. Thus, again, w · v is unchanged for all v 2 Vt and the same

alternative is chosen.
Finally we need to rule out the possibility of there being some

setting of � such that some new alternative, a, is chosen at round t
as a result of the scaling that was not previously chosen. But if this
were the case, then we can just scale the scaled instance by 1

c
and

return to the original instance where, by the above proof, there is
some value of � such that a is chosen at round t.

A DSCF is separable into single-minded agents if the chosen
alternative at a given round is unchanged by replacing an agent by
several new agents with the same accrued utility, each of which has
unit positive valuation for only one alternative.

DEFINITION 3.9. Say that a DSCF is separable into single-
minded agents (SSMA) if, at round t, the same allocation is chosen
if we replace each agent with several new agents according to the
following scheme: An agent with valuation vector Vt(i, :) is, for
each j 2 {1, . . . ,m}, replaced by Vt(i, j) new agents, each with
valuation vector ej . Each new agent has the same (possibly hallu-
cinated) accrued utility as the original agent it replaces.

LEMMA 3.10. LINEARGREEDY satisfies SSMA.
PROOF. Consider round t with valuation matrix Vt. LINEAR-

GREEDY chooses

argmax

j2Vt

nX

i=1

✓
Vt(i, j)

1

ut�1

(i)

◆

Now suppose that we replace the agents with new agents according
to the definition of SSMA. For every agent i and alternative j, we
now have Vt(i, j) agents with accrued utility ut�1

(i) and valuation
vector ej . The accrued utility, and therefore the weight of each of
these agents in the LINEARGREEDY algorithm, is the same as the
agent it replaced. Thus the value of the dot product on Line 7 for
an alternative j is

nX

i=1

✓
Vt(i, j)

1

ut�1

(i)

◆
,

and LINEARGREEDY chooses the same alternative in each
case.
3It is possible that �i is now greater than 1

nK
. If this is the case,

we can simply divide � by some small constant, bringing �i back
into the allowed range and not changing the relative weights of the
agents.

The plurality axiom says that if all agent valuation vectors are
unit vectors, and we have no reason to distinguish between agents,
then the allocation favored by the most agents should be chosen.

DEFINITION 3.11. Say that an allocation satisfies plurality (P)
if, when all agents have preferences of the form ej , and all agents
have the same (non-zero) accrued utility, then the chosen alterna-
tive is the one with non-zero valuation from the most agents.

The axiom says nothing about the case when all agents have zero
accrued utility. The idea of the axiom is that we should choose the
alternative which provides the greatest utility gain, relative to what
agents already have. However, in the case that agents have zero
accrued utility, it is not possible to make accurate comparisons as
to the relative benefit each agent receives.

OBSERVATION 3.12. LINEARGREEDY satisfies plurality.

We now show that any mechanism that achieves SF, SSMA, and
P simultaneously must agree with LINEARGREEDY, provided that
all accrued rewards are non-zero.

THEOREM 3.13. Suppose that ut�1

(i) > 0 for all i. Denote
by Jt the set of all alternatives that may be chosen by LINEAR-
GREEDY at time t. If a DSCF satisfies SF, SSMA, and P then it
must choose some alternative from Jt at time t.

PROOF. We have already shown that LINEARGREEDY satisfies
SF, SSMA, and P.

Suppose that all agents have ut�1

(i) > 0. Let M be a DSCF that
satisfies all three axioms simultaneously. We show that M ’s choice
of alternative is the same as one chosen by LINEARGREEDY.

Without loss of generality, let ut�1

(i) = u for all agents i. We
may assume this because, by SF, M would choose the same al-
location at round t (and all previous rounds) even if the valuation
vectors of some agent(s) were multiplied by a constant across all
rounds. So, if ut�1

(i) 6= ut�1

(j), we can transform the instance
to one in which all agents have the same accrued reward by mul-
tiplying agent i’s valuations by

Q
j 6=i ut�1

(j) for all i. Then all
agents have the same acccrued utility,

Q
i ut�1

(i).
By SSMA, we can replace the agents with

Pm
j=1

Vt(i, j) agents,
such that Vt(i, j) of them have valuation vector ej for all j 2
{1, . . . ,m}, all with accrued reward u. Then, by plurality, the cho-
sen allocation is

argmax

j2Vt

nX

i=1

Vt(i, j). (5)

But note that LINEARGREEDY assigns equal weight wi to each
agent since ut�1

(i) = ut�1

(j) for all i, j. Thus LINEARGREEDY
chooses precisely the alternatives which maximize Equation 5.

4. DISTRIBUTIONAL UPDATE ALGO-
RITHM

So far we have assumed nothing about the way that the input
matrices are drawn. In this section, we will assume that there is
some distribution, D, over Zn⇥m

�0,K from which matrices are drawn
i.i.d at each round.4

Suppose first that we know D, and that T = 1. Then the opti-
mal solution is defined by a policy: when Vt = v, choose allocation
j with probability xvj . We simply need to choose values for {xvj}
4In practice, this algorithm may be suitable when we believe the
distribution of inputs to be somewhat stable over time.



in order to maximize E(NSW (vavet )), as t ! 1. We can com-
pute these variables by the following convex program:

maximize
nX

i=1

log(

X

v2Zn⇥m
�0,K

mX

j=1

Pr(Vt = v)xvjv(i, j)) (6)

subject to
X

j2A

xvj = 1 8v 2 Zn⇥m
�0,K , xvj � 0 8v, j

THEOREM 4.1. The variables xvj computed by convex pro-
gram 6 define the optimal policy when the distribution D is known
and T = 1.

PROOF SKETCH. Let {xvj} be the optimal solution to convex
program 6. We show that {xvj} converges to the optimal solution
for the offline problem in the case that T ! 1. So consider an
offline instance for some large T , large enough that every matrix
v that occurs with non-zero probability in D appears a large num-
ber of times in the input. For every round that Vt = v, choose
an alternative by sampling from the distribution xvj . Denote the
objective value achieved by SD . Now consider the observed dis-
tribution in the finite instance, O. Consider solving convex pro-
gram 6 for distribution O, giving variables xO

vj , and denote the
value of the resulting solution on the large instance, SO . It can
be shown that SO ! SD as O ! D. By the law of large numbers,
limT!1 O = D, therefore limT!1 SO = SD .

Now consider the optimal offline solution as defined by mixed
integer program 2. Denote the value it achieves by SMIP . Clearly
SMIP � SO , since SMIP is optimal. Next, consider the alterna-
tives chosen in the offline solution and use them to define variables

x0
vj = #times(Vt = v and j is chosen)/#times(Vt = v). (7)

Denote the value of the solution defined by the x0
vj variables by S0.

S0
= SMIP since sampling from the solution corresponding to S0

gives the solution corresponding to SMIP .
Lastly, we show that limT!1 S0  limT!1 SO . Note that the

variables x0
vj are a feasible solution to convex program 6. There-

fore, as long as the instance is large enough that the probabilities
xO
vj can be well-sampled for every v that appears in the instance,

SO is the highest value that can be achieved. As T ! 1, we
can sample these variables arbitrarily well. Thus, limT!1 S0 
limT!1 SO .

So, in the limit as t ! 1, we have the relations

SMIP = S0  SO = SD  SMIP . (8)

Here the inequalities are forced to be equalities, otherwise we get
SMIP < SMIP . In particular, limT!1 SD = SMIP .

Let us now relax the assumption that D is known to the algo-
rithm. In this case, one approach would be to approximately learn
the distribution by sampling, then compute the optimal policy ac-
cording to the learned distribution, and act accordingly for the re-
maining rounds. We can even continue to update our belief on the
distribution as often as we want, re-compute the variables {xvj},
and choose according to them until we perform another update step.
If T = 1, we can learn the distribution arbitrarily well, and behave
close to optimally in the long term.

The algorithm we present now uses the same heuristic even when
T is finite. We begin with no knowledge of D, but update our
belief with every new piece of information Vt, and use the inferred
distribution to compute a policy {xvj}.

Crucially, the update to ps is done before vt is actually chosen
according to xVtj . Were this not the case, the algorithm would not
be defined when valuation matrix s appears for the first time.

Algorithm 3 UPDATE

1: for t = 1, . . . , T do
2: for s 2 {V

1

, V
2

, . . . , Vt} do
3: Let ps = (number of times s has been realized)/t
4: end for
5: Solve Convex Program 6 using inferred probabilities ps
6: Randomly draw vt according to xVtj

7: end for

EXAMPLE 4.2. Let n = m = 2. Suppose that V
1

= (

1 0

0 1

),
where the columns represent alternatives a

1

and a
2

respectively.
Then the algorithm updates its belief on D to be that V

1

appears
with probability 1, in which case the optimal polcy is to choose a

1

and a
2

with probability 0.5 each. Suppose it randomly chooses a
1

.
Suppose that V

2

= (

2 0

0 1

). Then the algorithm updates its belief on
D to be 0.5V

1

+ 0.5V
2

. Given this distribution, the optimal policy
is to choose a

1

when V
2

is realized and a
2

when V
1

is realized.
Thus, the algorithm chooses v

2

= a
1

. Now suppose that V
3

= V
2

.
Then the updated belief on D is 1

3

V
1

+

2

3

V
2

. The optimal policy
now is to choose a

2

whenever V
1

is realized, and whenever V
2

is
realized to draw randomly from 3

4

a
1

+

1

4

a
2

. Thus the algorithm
draws an allocation for v

3

from this distribution.

Observe that, in Example 4.2, from the perspective of the algo-
rithm at t = 3, a mistake was made at round 1 by choosing a

1

instead of a
2

. As stated, this algorithm does nothing to take the
mistake into account. However, one could imagine incorporating a
more ‘backwards-looking’ approach into this algorithm. As a sim-
ple example we could, with probability p, simply use GREEDY at
round t, which would act to partially compensate for past mistakes.
In Example 4.2, GREEDY would choose a

2

to make up for agent 2
not accruing any utility from the first two rounds.

5. STOCHASTIC CONVEX PROGRAM-
MING APPROACH

A recent paper by Agrawal and Devanur [5] designed algorithms
for a general class of problems that encompasses our framework. In
their setting, the input is a concave function over a bounded domain
R, a convex set S ✓ R, and the goal is to choose a vector vt at each
round so that f(vaveT ) is maximized, subject to vaveT 2 S. For the
setting in our paper, however, there is no constraint, since all input
vectors are feasible. That is, S = R.

They provide an algorithm using tools from convex optimiza-
tion which, in our setting, reduces to Algorithm 4. The algorithm
assigns a vector of weights, �, to the agents and minimizes the
weighted sum of valuations at each round (weights can be nega-
tive). Every round, � is updated by an online convex optimization
update (the implementation we present uses the gradient descent
algorithm to update �).

The initialized variables � and ⌘ can be set to any values satis-
fying the constraints. In our implementation, we set � = �1 and
⌘ = 0.5 after some experimentation.

Agrawal and Devanur prove a regret bound on Algorithm 4 of

O

✓q
n log(n)

T

◆
. This is a bound on the expected regret when the

input matrices appear in a random order. It is not a guarantee on
any single instance. Therefore, while we would expect good perfor-
mance from this algorithm on random instances, we may not neces-
sarily expect low regret on instances where the agents’ preferences
change over time in a structured way. We explore this further in
Section 6.



Algorithm 4 STOCHASTIC

1: Initialize � 2 Rn, ||�||
2


p
n, ⌘ > 0.

2: for t = 1, . . . , T do
3: Choose vt = argminj2Vt

j · �t

4: if �t(i) >
�1

K+1

then
5: Set �t+1

(i) = �t(i)� ⌘(vt(i)�K � 1)

6: else if �t(i) < �1 then
7: Set �t+1

(i) = �t(i)� ⌘(vt(i)� 1)

8: else
9: Set �t+1

(i) = �t(i)� ⌘(vt(i)� 1

�t(i)
)

10: end if
11: if ||�t+1

||
2

>
p
n then

12: Set �t+1

=

p
n

||�t+1||2
�t+1

13: end if
14: end for

The regret guarantees provided by Algorithm 4 require that the
concave function is Lipschitz continuous on the bounded domain
R. Unfortunately, our function, logNSW (·), is not Lipschitz con-
tinuous at 0, which we fix by shifting the agents’ valuations to lie
in the range {1, . . . ,K+1}. After solving, we then shift the valua-
tions back before computing the value of the solution found. When
K is large, this shift is not too significant. If K was small, we could
shift the utilities by something less than 1. However, the Lipschitz
constant increases as we allow inputs closer to 0, and this constant
appears as a linear factor in the regret bound.

6. EXPERIMENTS

6.1 Simulated Data
We compare the four algorithms discussed in this paper –

GREEDY, LINEARGREEDY, STOCHASTIC, and UPDATE– on in-
put data randomly generated from a variety of distributions. As a
benchmark we also compute the optimal offline solution for each
input using MIP (2).

We consider three input models. The first, uniform, has each
Vt(i, j) chosen uniformly at random between 0 and 20. The sec-
ond, half-half, draws Vt from a different distribution depending on
t. For t < T

2

, Vt = (

A B
C D ), where A,B,C,D are submatrices of

size n
2

⇥ m
2

. Entries in A are integers in the range 0 to 25 drawn
uniformly at random, entries in B and C are in the range 0 to 5,
and entries in D are in the range 0 to 10. For t � T

2

, submatrices
A,B,C,D are drawn in the same way but Vt = (

D B
C A ). The third

model, alternating, sets Vt = (

A B
C D ) for odd t and Vt = (

D B
C A ) for

even t. In both of these latter models, it is almost always optimal
to choose an alternative for which half of the valuations are being
drawn from the high, ‘A’, distribution. The other agents can be
compensated in a round where they draw from the ‘A’ distribution.

For every fixed value of n, m, T , and input model that we report,
values are averaged over 15 random instances. When not explicitly
varied, n = 20, m = 10, and T = 40.

Consider first the runtime comparisons in Figure 1. These sim-
ulations are performed on inputs drawn from the half-half model,
varying values of n, m, and T seperately. Three of the algorithms,
GREEDY, LINEARGREEDY, and STOCHASTIC, take virtually no
time to run on the instances we consider. This is not surprising
as each makes only a simple comparison between each of the m
alternatives, followed by some very simple arithmetic operations
to update weights and accrued utility. The UPDATE algorithm is
the slowest by far on our simulations, even slower than the MIP
for solving the offline problem (although we would expect that for

Table 1: Spark Workloads
App Category Dataset Data Size
Correlation Statistics kdda2010 [28] 2.5G
DecisionTree Classification kdda2010 2.5G
FP Growth Pattern Mining Webdocs [19] 1.5G
GradientBoostedTrees Classification kddb2010 [28] 4.8G
KMeans Clustering uscensus1990 [3] 327M
LinearRegression Classification kddb2010 4.8G
ALS Collaborative Filtering movielens2015 [2] 325M
NaiveBayesian Classification kdda2010 [28] 2.5G
SVM Classification kdda2010 2.5G
Pagerank Graph Processing wdc2012 [4] 5.3G
ConnectedComponents Graph Processing wdc2012 5.3G
TriangleCounting Graph Processing wdc2012 5.3G

large values of T , the MIP would become slower than UPDATE).
We could speed it up by a constant factor of k by only updating the
inferred distribution, and values of xVtj , every k rounds, and still
expect reasonable results. All of our algorithms scale well with n
and m. Runtime results for the other two input models are very
similar and we do not present them here.

Turning to the value comparisons in Figure 2, we see that the
input model used heavily influences the performance of the algo-
rithms. In these graphs, OPT is normalized to 1, and for each input
model we present results only for varying T . The results for vary-
ing m and n look very similar.

For the uniform input model, all algorithms perform well,
achieving at least 75% of the optimal value. This model provides
a relatively simple case for the algorithms; indeed, simply maxi-
mizing (additive) welfare at each round is the optimal solution in
the limit as T grows. For the half-half distribution, STOCHASTIC
is clearly better than all the other algorithms, achieving around 60-
70% of OPT compared to less than 30% for the others. This is
because the weight vector, �t, can change quite significantly in the
space of just one round. Thus it is not over-burdened by rounds
in the past and is able to quickly adapt when the input distribu-
tion changes. In fact, in all instances that we examined closely,
STOCHASTIC chooses a ‘good’ alternative for the first T

2

rounds,
followed by a ‘bad’ alternative for a single round, and then ‘good’
alternatives for all remaining rounds.

However, the tendency to take exactly one round to adapt to
changing circumstances counts against STOCHASTIC in the alter-
nating model, since by the time it adapts the input distribution has
changed again. Here we see the other algorithms performing well,
achieving very close to optimal performance, while STOCHASTIC
achieves very close to 0. Indeed, this model is tailored to suit UP-
DATE, which quickly learns to choose an alternative with some
‘A’ valuations, and the greedy algorithms, since it enables us to
alternate which agents get the high valuations, keeping everyone
roughly equally well-off at the end of every round.

6.2 Real Data: Power Boost Allocation
We ran the algorithms on real data gathered from a power boost

allocation problem. In this problem, n computer applications are
each allocated a base level of power, and compete for m < n ad-
ditional (indivisible) units of extra power (power boosts) at each
of T rounds. For our instance, power boosts are allcoated using
RAPL [1] technology and each application’s performance is mea-
sured under base and high power limits, 30W and 130W, respec-
tively. We evaluate Apache Spark [29] benchmarks. Table 1 lists
the twelve Spark applications in our instance.

Each Spark application is defined by a fixed number
of tasks. We profile tasks’ completion time. We de-
fine an application’s utility in a round as the number of
tasks completed normalized by its total number of tasks.
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Figure 1: Simulation results showing the effect of varying number of agents, n, number of alternatives, m, and number of rounds,
T , on the runtime of each algorithm.
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Figure 2: Simulation results showing the effect of the input model on the value achieved by the algorithms. For each model, n and m
are held constant while T varies.

Figure 3: Nash Social Welfare achieved by
the algorithms, as a fraction of OPT.

Since the
length of the
utility trace is
shorter when
profiled un-
der boosted
power, we
use linear
interpolation
to extend
the shorter
trace. Thus,
for each
application a,
we estimate the base power utility (ubase

a,t ) and boosted power utility
(uboost

a,t ) in each round.
In our instance, there are two power boosts to be allocated.

Therefore, at each round there are
�
12

2

�
alternatives, one for each

pair of applications. For an alternative j corresponding to power
boosts for applications a and b, we have that Vt(a, j) = uboost

a,t ,
Vt(b, j) = uboost

b,t , and Vt(c, j) = ubase
c,t for all other applications

c 6= a, b. We have 120 rounds in the instance we tested.
The Nash Social Welfare achieved on this instance is shown in

Figure 3, normalized against OPT. Most striking is the poor perfor-
mance of STOCHASTIC. We hypothesize that this is due to some of
the applications having long stretches of consecutive rounds where
they achieve zero utility for all allocations, followed by short pe-
riods with positive reported utility. For these applications, the pat-
tern of valuations looks most like the alternating distribution, where
STOCHASTIC also performed poorly.

Also notable is the performance of LINEARGREEDY, which per-
forms roughly twice as well as GREEDY and UPDATE. However,
both of these consistently outperformed LINEARGREEDY for our
simulated data. It is not yet clear to us whether there is a general
structural property of this dataset which lends itself to LINEAR-

GREEDY, or if its good performance was simply a chance occur-
rence.

Runtime results are similar to those presented in Section 6.1,
with one exception. The time taken to solve the offline instance
is 384 seconds, whereas UPDATE takes only 108 seconds. This
provides evidence that, for large instances, the optimal MICP is
prohibitively slow compared to our online algorithms. For compar-
ison, the three other algorithms each ran in less than 0.2 seconds.

7. STRATEGIC ISSUES
In this section, we discuss strategic incentives of the agents that

arise in the dynamic setting. We emphasize again that, while we
have no formal results regarding incentives, and what we do know
is mostly negative, we consider the multiple objective framework
from Section 1 to be important and interesting in and of itself, and
here there are no strategic concerns. Of course, we consider the
strategic aspect to be very interesting also and believe it to be a
fruitful area for generating research questions.

Without the upper bound on valuations, K, we might be wor-
ried about agents drastically overreporting their valuations. For in-
stance, an agent could misreport some high valuation N in the first
round and have their preferred alternative chosen. To compensate
for this utility counting against them in the next round, they could
report valuations on the order of N2, then N4, etc. Of course, with
our upper bound in place, such a strategy would have to stop some-
where and could not be used to dominate every round (as it could
if there was no bound).

Still, the setup and approaches described in this paper are highly
vulnerable to strategic behaviour by the agents. The reason for
this is that it is impossible to distinguish between an agent that is
genuinely unhappy with choices made in previous rounds, and an
agent simply pretending to be unhappy with previous alternatives.
If we wish to compensate the former agent for their unhappiness,
we must allow for the possibility of being gamed by the latter. This
is essentially the free-rider problem well-known to economists (see,



e.g., [12] for a discussion).
There are many interesting and unresolved questions in this do-

main. While we can not hope for strategy-proofness in the most
general setting, are there restricted settings in which we do regain
(limited) strategy-proofness? For instance, can we limit the expres-
siveness allowed to the agents in exchange for strategy-proofness?
Can we say anything about the case where alternatives are simply
different allocations of private goods (so that no agent may benefit
directly from ‘free-riding’ on another agent’s high valuation)?

Even in the general setting, it may be true that agents never have
an incentive to over-report their valuation in the case that T = 1.
Intuitively, if the algorithm believes the agent has more utility than
they really do, it can only hurt the agent in future rounds. However,
we have neither a proof nor a counter-example to this (imprecise)
statement.

8. APPLICATIONS

8.1 Voting
Our setup can be directly applied to voting, where agents are

voters who report a utility for each of the alternatives. If voters are
required to report only an ordering over alternatives within each
round, then we can simply infer utilities according to a chosen scor-
ing vector. For example, we could set V (i, j) = 1 if alternative j
is voter i’s most preferred alternative and 0 otherwise (the plurality
scoring vector), or V (i, j) = m � k when j is ranked k-th in i’s
preference order (the Borda utility vector).

An interesting direction for future work is to investigate what
social-choice theoretic properties are satisfied by the Nash social
welfare in this repeated setting. One weak property is unanim-
ity, which states that if all voters rank the same alternative at the
top of their ordering, then that alternative should be chosen (in the
dynamic setting we could require this on a round-by-round basis).
Clearly all of the algorithms presented in this paper satsify this con-
dition for all monotone scoring vectors. Some other fundamental
axioms also extend naturally to the dynamic setting, for example
anonymity and neutrality (which we define for the dynamic setting
in Section 2).

For some axioms, however, it is not so clear how to extend to the
dynamic setting. For instance, consider the Condorcet criterion,
which states that any alternative which achieves a pairwise major-
ity against all other alternatives should be chosen. This makes sense
in the one-shot setting, but maybe less sense in the dynamic case.
Suppose that there are two alternatives, A and B, and that 51% of
voters prefer A to B in every round. Then the Condorcet crite-
rion appears to say that we should choose A in every round, while
fairness considerations dictate choosing B at least occasionally. It
is not clear how we would extend the Condorcet criterion to the
dynamic setting and, if we cannot, we may need novel axioms.

There is a natural link between repeated elections and the theory
of multi-winner elections. In multi-winner elections, not only do
we want to choose popular alternatives, but we also want to repre-
sent as many voters as possible, for which several rules have been
designed [10, 20, 17]. Consider an election where the aim is to
choose a committee of size k < m. This is exactly equivalent to
setting T = k and choosing a single distinct winner at each round,
while also imposing the restriction that voters do not change their
votes between rounds. Thus we can view multi-winner elections
as a special case of repeated elections. It would be interesting to
check whether any desiderata in the context of multi-winner elec-
tions extend naturally to the repeated setting.

8.2 Allocating Shared Resources

Consider a situation in which a group of agents take turns being
allocated a shared resource for discrete units of time. Examples
include allocating supercomputer time among members of a uni-
versity department or assigning the use of a holiday home owned
jointly by several people. In both cases, demand varies across time
intervals and across agents. For instance, people who like skiing
may want use of the holiday home in the winter, while those who
like hiking may prefer a different season.

Another interesting aspect of these situations is that our notion
of fairness may not be to treat all agents exactly equally. For in-
stance, if people contributed unequally to the purchase of the hol-
iday home, the group may decide that someone who paid twice as
much as another person ‘deserves’ to get twice the benefit from the
home. In the supercomputer example, we may wish to allocate time
based on the amount of grant money contributed to the purchase of
the machine (for example).

In these cases we may wish to generalize the Nash social welfare
to the Cobb-Douglas welfare. The Cobb-Douglas welfare for utility
vector v, CD(v), is given by

CD(v) =
nY

i=1

v(i)↵i ,

where
Pn

i=1

↵i  1. The case where all ↵i =

1

n
is the special

case of Nash social welfare, but setting other values of ↵i allows us
to prioritize some agents over others. It is illuminating to consider
the simple case where all agents have a common unit of utility (say,
dollars). In this case, the Nash social welfare is maximized when
all agents receive exactly the same utility. If we generalize the co-
efficients, then the Cobb-Douglas welfare is maximized when the
agents receive utility in exactly the ratio of their exponents ↵i. So
if agent i contributed twice as much money to the purchase of the
holiday home as agent j, simply set ↵i = 2↵j .

9. CONCLUSION
Election designers and social choice researchers often do not

consider the fact that many elections are conducted as sequences
of related elections. In this work, we have provided a framework
to allow for the design and analysis of dynamic election protocols,
and repeated decision making rules generally. We have presented
four candidate online algorithms for solving these dynamic prob-
lems. Our simulations do not determine a clear winner, but instead
suggest that the right choice of algorithm is highly dependent on
the setting and the model of how agents’ valuations change over
time.

Our work is preliminary, and leaves a lot of scope for future re-
search in addition to the specific directions already discussed. One
direction would be to design a more precise model of voter pref-
erences, possibly modeling changing preferences by an MDP as
has been done in [9, 24]. We have also not considered modeling
discounting of the agents’ utilities. It would also be nice to have
provable guarantees on the regret of the greedy algorithms.



Acknowledgments
We sincerely thank Songchun Fan for sharing the data used in Sec-
tion 6.2. We are thankful for support from NSF under awards
IIS-1527434, IIS-0953756, CCF-1101659, CCF-1149252 (CA-
REER), CCF-1337215 (XPS-CLCCA), SHF-1527610, and AF-
1408784, ARO under grants W911NF-12-1-0550 and W911NF-
11-1-0332, and a Guggenheim Fellowship. This work is also sup-
ported by STARnet, a Semiconductor Research Corporation pro-
gram, sponsored by MARCO and DARPA. This work was done in
part while Conitzer was visiting the Simons Institute for the Theory
of Computing. Any opinions, findings, conclusions, or recommen-
dations expressed in this material are those of the authors and do
not necessarily reflect the views of these sponsors.

REFERENCES
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ABSTRACT
Rank aggregation is the problem of generating an overall
ranking from a set of individual votes. The aim in doing
so is to produce a ranking which is as close as possible to
the (unknown) correct ranking for a given distance mea-
sure such as the Kendall-tau distance. The challenge is that
votes are often both noisy and incomplete. Existing work
has largely focused on finding the most likely ranking for a
particular noise model (such as Mallows’). Instead, here we
focus on minimising the error, i.e., the expected distance be-
tween the aggregated ranking and the true underlying one.
Specifically, we show that the two objectives result in di↵er-
ent rankings, and that these di↵erences become especially
significant when many votes are missing. Furthermore, we
show how to compute local improvements on existing rank-
ings to reduce the expected error. Finally, we run extensive
experiments on both synthetic and real data to compare dif-
ferent aggregation rules. In particular, a surprising result is
that for votes generated according to the Mallows’ model,
Copeland often outperforms Kemeny optimal, despite the
latter being the maximum likelihood estimator.

Categories and Subject Descriptors
I.2.11 [Distributed AI]: Multiagent systems

Keywords
Economic paradigms: Social Choice Theory

1. INTRODUCTION
Rank aggregation is the problem of producing a complete
ranking from votes cast by individual agents, where the votes
can be seen as noisy and incomplete estimates of a ranking
that is an underlying ground truth. This perspective on vot-
ing dates back to Marquis de Condorcet [25], who said that
voting may be regarded as a way of uncovering this ground
truth. There are many practical examples1 of rank aggre-
gation, including websites that produce rankings of restau-
rants, books and movies based on crowdsourced contribu-

1
http://www.tripadvisor.com/Restaurants,
http://www.goodreads.com/choiceawards
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tions from their users, scientific communities that use votes
from their members to select which project proposals to fund
or which papers to accept [18, 5], or peer grading in massive
online open courses [3]. Another prominent application is
the use of rank aggregation to produce a meta search engine
from the search results of individual search engines [13]. In
these settings votes are not only noisy, but also incomplete
since typically only a subset of the candidates (e.g., restau-
rants or websites) is ranked by any single individual.

To find a ranking which is close to the ground truth, most
current work assumes a probabilistic noise model such as
Mallows [22, 32], and then aims to maximise the likelihood
of an aggregate ranking. In Mallows’ model, a probability
is assumed for ordering a pair of candidates correctly, and
votes are produced by repeatedly ordering all pairs until this
results in a consistent (acyclic) ranking. For this model, it
has been shown that Kemeny’s rule is the maximum likeli-
hood estimator (MLE) [32]. Similarly, some other commonly
used voting rules are MLEs for specific noise models [9, 8].

However, in most settings the aim should arguably not be
to find a most likely explanation of the noisy observations,
but to find a ranking that gives the best results when used
in subsequent decision making. When votes are noisy and
incomplete, many rankings may have a likelihood of similar
magnitude, and there may even be multiple rankings with
the maximum likelihood. In all these cases, the probability
that a ranking with maximum likelihood is the true rank-
ing is small. When an aggregated ranking is used, success
does not depend on having found the true ranking exactly.
Rather, it is important to construct and use a ranking for
which the distance to the true ranking is as small as possible
in expectation. This means that we should aim to minimise
the expected distance (for a particular measure) of an ag-
gregate ranking to the true ranking — which we term the
error — instead of aiming for a ranking that maximises the
likelihood. In contrast to MLEs, to date it is still unknown
which commonly used voting rules perform best regarding
this objective.

Against this background, in this paper we assume noise ac-
cording to the Mallows’ model, and for this model we make
the following novel contributions. (i) We show that the
MLE is not always minimising the error. (ii) We show that
computing the error is #P-hard. (iii) We show that local
Kemenisation, a computationally simple procedure for im-
proving aggregated rankings in terms of their likelihood, also
reduces the error, and (iv) through experiments on both syn-
thetic and real data, we show how noise and incompleteness
influence the performance of a large set of voting rules.



The paper is structured as follows. In Section 2 we intro-
duce notation, the distance measure used, and the model for
noise and incompleteness, and we show that Kemeny’s rule
is the MLE also for the model including incompleteness. In
Section 3 we then formally define the objective of minimis-
ing the error and show how this is di↵erent from maximising
the likelihood. We give the hardness proof of computing the
error and show that local Kemenisation reduces the error. In
Section 4 we first introduce the voting rules and their adap-
tations to settings with incomplete rankings. Subsequently,
we evaluate these rules under varying levels of noise and
incompleteness for both synthetic votes as well as on two
ranking data sets from PrefLib [24]. Section 5 discusses re-
lated work and Section 6 concludes.

2. MODEL
The aim in this paper is to find rank aggregation rules which
minimise the expected error, where the error is given by the
Kendall-tau distance to the true ranking (as defined below).
Formally, let A = {1, 2, . . . ,m} denote a set of candidates or
alternatives, where m = |A| is the number of alternatives to
be ranked. In addition, let N = {1, 2, . . . , n} denote the set
of n agents or voters. Each agent has an incomplete ranking
over the set of candidates. This is modeled as a complete or-
der on a subset of the candidates.2 We thus define a vote by
agent k as a ranking, i.e., linear order, over a subset A

k

✓ A

of the candidates, denoted by �

k

: A

k

! {1, 2, . . . , |A
k

|}.
Here, �

k

(i) defines the rank of candidate i (lower is bet-
ter). We also use i �

�k j to denote �

k

(i) < �

k

(j), i.e., i
is ranked higher than j according to agent k. Furthermore,
|�

k

|  m is the number of candidates voted for by agent k.
Note that �

k

(j) is undefined for any candidate j 2 A \ A

k

.
In such a case we say the vote is incomplete. By inserting
remaining alternatives A \A

k

in an incomplete ranking, we
can construct a potential underlying complete ranking of all
alternatives. This is called a completion (or extension [17]).
Furthermore, we sometimes use D = {�1, . . . ,�n

} (for ob-
served data) to denote all votes.

If we have access to the underlying true ranking, we can
measure the quality of a voting rule on a given profile of
votes by the distance of the aggregated ranking to the true
ranking. The most common distance metric, and the one we
use in this paper, is the Kendall-tau distance [16]. In detail,
the Kendall-tau distance K counts the pairs of alternatives
that are di↵erently ordered by � than by ⌧ .

K(�, ⌧) = |{{i, j} ✓ A : i �
�

j and i �
⌧

j}| (1)

Such a di↵erently ordered pair i and j is called an inver-
sion. The Kendall-tau distance can be found in O (m lnm)
using a folk algorithm variant of merge sort called “count
inversions”.

The rule selecting an aggregate ranking ⌧

⇤ which min-
imises the Kendall-tau distances to all votes is called the
Kemeny optimal aggregation rule, and is given by:

⌧

⇤ = argmin
⌧

X

k2N

K(�
k

, ⌧) (2)

A more convenient way to write this is:

⌧

⇤ = argmin
⌧

X

{i,j}✓A:i�⌧ j

n

d

(i, j|D), (3)

2This di↵ers from [31] who consider any partial order.

where n

d

(i, j|D) = |{k 2 N : i �
�k j}| is the number

of voters who disagree with the order i � j. Likewise,
n

a

(i, j|D) = |{k 2 N : i �
�k j}| denotes the number of

agreements. Note that, in case of complete rankings, we
have that n

a

(i, j|D) + n

d

(i, j|D) = n. However, this is not
necessarily the case when rankings are incomplete.

We now describe the model for noisy and missing observa-
tions/votes. We assume noise according to the well-known
Mallows’ model for a probability p > 0.5. In this model, the
likelihood of a ranking ⌧ given observed votes D is:

L(⌧ |D) =
1
Z1

Y

{i,j}✓A:i�⌧ j

p

na(i,j|D)(1� p)nd(i,j|D)
, (4)

where Z1 is a (normalisation) constant. It has been shown
that Kemeny optimal chooses the ranking with the highest
likelihood [32].

We extend this model to incomplete rankings by introduc-
ing the probability of a vote missing, where this probability
is given by q. We assume that this probability is indepen-
dent of the position in the true ranking. Incorporating this
probability, we can compute the likelihood of a ranking ⌧

given observations D as follows:

L0(⌧ |D) = L(⌧ |D)
1
Z2

Y

k2N

(1� q)|�k|
q

m�|�k|
. (5)

This assumption underlying this model has sometimes been
called the “missing at random assumption” [14].

It is easy to see that Kemeny optimal still maximises the
likelihood, irrespective of the value of q.

Theorem 1. Kemeny optimal is the maximum-likelihood
estimator for Equation 5.

Proof. The ranking which maximises the likelihood is
also maximising the log-likelihood. This allows us to drop
all constants, including the normalisations Z1 and Z2 and
even the incompleteness probabilities. Therefore:

argmax
⌧

L0(⌧, D) = argmax
⌧

ln(L0(⌧, D)) =

argmax
⌧

X

{i,j}✓A:i�⌧ j

(n
a

(i, j|D) ln(p) + n

d

(i, j|D) ln(1� p))

Since p > 0.5 we know that ln(p) > ln(1 � p), and because
the total sum of ranked pairs is constant, we conclude that
this log-likelihood is maximised if the number of agreements
is (i.e., the number of disagreements is minimised).

3. MINIMISING THE ERROR
So far we have discussed maximising the likelihood. Instead,
the goal in this paper is to minimise the rank aggregation
error, which we define as the expected Kendall-tau distance.
Formally this is given by:

KT-error(⌧, D) =
X

⌧

02T

K(⌧, ⌧ 0) · L0(⌧ 0|D), (6)

where T is the set of all possible rankings.
Below we first discuss several examples to show that the

two aims can result in di↵erent rankings, and then discuss
the computational hardness of minimising the error and a
local search approach for finding incremental improvements.



3.1 Likelihood vs. Error
Minimising the expected Kendall-tau distance and maximis-
ing the likelihood result in di↵erent rankings. We start by
showing that this is true for instances with candidates that
do not occur in any vote. We call such a candidate free.

Definition 1. A candidate a 2 A is free when none of
the votes D contain a.

Example 1. Let three candidates a, b, c be given, and one
agent with vote a �

�1 b. Kemeny’s rule is indi↵erent be-
tween the three possible aggregate rankings (without noise
(i.e., p = 1), each has a likelihood of 1

3 ). The expected
Kendall-tau distances for each of these, however, di↵er:

⌧

i

ranking L(⌧
i

|D) K(⌧
i

, ⌧

j

) KT-error(⌧
i

, D)
⌧1 a � b � c

1
3 0 1 2 1

⌧2 a � c � b

1
3 1 0 1 2

3
⌧3 c � a � b

1
3 2 1 0 1

Because the distance of a � c � b to each of the other rank-
ings is only 1, it has a lower expected error. Note that the
free candidate here is in the middle of the ranking.

This example shows that minimising the error produces a
single natural ranking with the free candidate in the mid-
dle, where the likelihood is the same for multiple rankings.
Generally:

Proposition 1. On an instance D with free candidates:

1. Kemeny’s rule is indi↵erent between the position of free
candidates (i.e., each position is equally likely);

2. The KT-error is minimised when free candidates are
positioned in the median of the ranking.

Proof. Let a ranking ⇡ of m candidates be given. Let
T be the set of all rankings of length m, L(⌧ |D) denote the
likelihood of a ranking ⌧ 2 T , and let ⇡

i

(or ⌧

i

) denote the
ranking ⇡ (or ⌧ , respectively) where the free candidate is
placed at position i 2 {0, . . . ,m}.

For the first statement, since the free candidate does not
appear in D, each position is equally likely, and therefore,
for any ⌧

j

the likelihood L(⌧
j

|D) = c · L(⌧ |D), with c =
1

m+1 . Therefore, with Theorem 1, Kemeny’s rule places free
candidates at every position with equal probability.

For the second statement, we show that inserting a free
candidate in the middle of the ranking minimises the ex-
pected error. By definition of the KT-error and L(⌧

j

|D) =
c · L(⌧ |D) from above, we have that

KT-error(⇡
i

, D) =
X

j

X

⌧2T

K(⇡
i

, ⌧

j

) · c · L(⌧ |D).

The distance (error) of ⇡
i

to ⌧

j

is equal to the distance of
⇡ to ⌧ except for the di↵erence in the position of the free
candidate, i.e., |i� j|. Consequently,

KT-error(⇡
i

, D)
= c ·P

j

P
⌧2T

(K(⇡, ⌧) + |i� j|) · L(⌧ |D)
= KT-error(⇡, D) + c ·P

j

|i� j| ·P
⌧2T

L(⌧ |D)

This is minimal if and only if
P

j

|i � j| = P
i�1
j=0(i � j) +P

m

j=i+1(j�i). This is minimal for i = m+1
2 . With induction

this also holds for a set of free candidates.

Next, we show that the di↵erence between the two objectives
goes even beyond free candidates, and can result in di↵erent
rankings even when the votes are complete.

Example 2. Let p = 0.7 and five complete votes be given:
twice a � b � c, twice c � a � b and once b � c � a.
⌧

k

ranking
P

n

a

P
n

d

L(⌧
k

|D) KT-error
⌧0 a � b � c 9 6 0.361 1.123
⌧1 a � c � b 6 9 0.028 1.877
⌧2 b � a � c 8 7 0.155 1.035
⌧3 b � c � a 7 8 0.066 1.965
⌧4 c � a � b 9 6 0.361 1.123
⌧5 c � b � a 6 9 0.028 1.877

Then the Kemeny rule selects a � b � c or c � a � b, but
the ranking that minimises the KT-error is b � a � c.

Also here, we see that the MLE is not minimising the ex-
pected error.

3.2 Hardness
Finding the ranking with the largest likelihood (i.e., Kemeny
optimal) is NP-complete [15]. Towards establishing the com-
putational complexity of finding an aggregate ranking with
the minimum error, we can show that the problem of com-
puting the error of a (single) aggregate ranking is #P-hard
(even) when there is no noise in the data D. The proof uses
a reduction from computing the number of linear extensions
of a partial order, which is #P-complete [2].

In the proofs below, let T
D

denote the set of extensions of
the partial order defined by the votes of D and x

D

= |T
D

|
the number of such extensions. For our proof we need the
following lemmas.

Lemma 1. L(⌧ |D) is the same for all consistent rankings
⌧ 2 T

D

if D is generated from a model without noise, and
this is equal to 1

xD
.

This follows because incompleteness is determined indepen-
dently from the position in the ranking.

If D does not imply a complete linear order, there is a
pair a, b of unordered alternatives. We express the number
of consistent extensions of D in terms of the numbers of
extensions for both possible orders for a and b as follows.

Lemma 2. Given a ranking ⇡ and data D without noise
on a set of alternatives A. Let a, b 2 A be given. Let D

ab

denote D [ {(a, b)}. Then

KT-error(⇡, D) · x
D

= KT-error(⇡, D
ab

) · x
Dab

+ KT-error(⇡, D
ba

) · (x
D

� x

Dab).

Proof. With Lemma 1, L(⌧ |D) = 1
xD

. Applying the
definition of KT-error, we write

KT-error(⇡, D) · x
D

=
P

⌧2TD
K(⇡, ⌧)

=
P

⌧2TDab
K(⇡, ⌧) +

P
⌧2TDba

K(⇡, ⌧).

Using the definition of KT-error and of D

ab

and D

ba

the
result then follows.

The idea of the proof below is now to repeatedly use this
fact that the number of consistent extensions of D is equal
to the sum of the number of consistent extensions of D [
{(a, b)} and of D [ {(b, a)}. By repeatedly adding (yet)
unordered pairs of a and b to D, we collect a polynomial
number (at most m

2) of linear constraints on the numbers
of consistent extensions of increasingly larger sets of votes,
ultimately leading to a single consistent extension.

Theorem 2. Given data D generated from a model with-
out noise, determining the expected error of an aggregate
ranking ⇡ is #P-hard.



Proof. We show this by a (polynomial) reduction from
the problem of computing the number of linear extensions
of a partial order �. Let such a partial order � over a set
of candidates A be given. First, for each pair of candidates
(a, b) with a � b in the partial order, insert an incomplete
vote with a before b in D. Let a ranking ⇡ 2 T

D

be given
(e.g., by taking a topological order). Initially, D has x0

consistent extensions. Then execute the following algorithm.

1. Initialise i to 0 and e0 = KT-error(⇡, D).
2. For every pair (a, b), if adding a � b does not create a

cycle in the majority graph of D then
(a) Increment i, set D

ab

= D [ {(a, b)} and D

ba

=
D [ {(b, a)}.

(b) Let e
i

= KT-error(⇡, D
ab

).
(c) Let C

i

denote the constraint e
i�1 ·xi�1 = e

i

·x
i

+
KT-error(⇡, D

ba

) · (x
i�1 � x

i

).
(d) Let D = D

ab

.
Let k denote i in the last iteration. All thus found con-
straints C

i

are valid because of Lemma 2. When the last
pair of candidates has been added to D, at index k  m

2,
there is only one consistent extension, hence x

k

= 1. If we
know a value x

i

, we can compute x

i�1 using the equality
constraint C

i

with both x

i

and x

i�1. So with induction we
can compute x0 in k such steps. This gives us the total
number of consistent extensions of the partial order in poly-
nomial time. Since with this polynomial number of calls to
KT-error we solved a #P-hard problem, we conclude that
computing KT-error is also #P-hard.

3.3 Local Search
Although computing the error for candidate rankings to find
the minimal one does not seem to be feasible, we can improve
a ranking by making local adjustments. In particular, given
a ranking ⌧ , it is easy to determine if, by swapping two
adjacent candidates, we can improve the KT-error.

Theorem 3. Let ⌧

ab

and ⌧

ba

be two equal rankings ex-
cept that two adjacent candidates, a and b, are swapped.
That is, a �

⌧ab b and b �
⌧ba a. Then: KT-error(⌧

ab

, D) <
KT-error(⌧

ba

, D) i↵ n

a

(a, b|D) > n

a

(b, a|D).

Proof. Let T
ab

⇢ T denote the set of all rankings where
a � b (not necessarily adjacent ones) and T

ba

= T\T
ab

the
set of all rankings where b � a. Then T

ab

[T

ba

is a partition
of all possible rankings and |T

ab

| = |T
ba

|. We can thus write
the KT-error(⌧, D) (using Equation 6) as:

X

⌧

02Tab

K(⌧, ⌧ 0) · L(⌧ 0|D) +
X

⌧

02Tba

K(⌧, ⌧ 0) · L(⌧ 0|D).

For ⌧ 2 T

ab

, from the definition of the Kendall-tau distance,
we know that K(⌧

ba

, ⌧) = K(⌧
ab

, ⌧) + 1, and for ⌧ 2 T

ba

,
K(⌧

ba

, ⌧) = K(⌧
ab

, ⌧)�1. Therefore the KT-error(⌧
ba

, D) is

=
X

⌧2Tab

(K(⌧
ab

, ⌧) + 1) · L(⌧ |D) (7)

+
X

⌧2Tba

(K(⌧
ab

, ⌧)� 1) · L(⌧ |D)

=
X

⌧2Tab

K(⌧
ab

, ⌧) · L(⌧ |D) +
X

⌧2Tab

L(⌧ |D)

+
X

⌧2Tba

K(⌧
ab

, ⌧) · L(⌧ |D)�
X

⌧2Tba

L(⌧ |D)

= KT-error(⌧
ab

, D) +
X

⌧2Tab

L(⌧ |D)�
X

⌧2Tba

L(⌧ |D).

Note that
P

⌧2Tab
L(⌧ |D) +

P
⌧2Tba

L(⌧ |D) = 1, or, more
generally, a constant (normalisation is not relevant here).

We can express the likelihood that a comes before b given
the data as:
X

⌧2Tab

L(⌧ |D) = L(a � b|D) =
1
Z

p

na(a,b|D)(1� p)na(b,a|D)
.

Using Equation 7 we thus can write the di↵erence between
errors, KT-error(⌧

ba

, D)�KT-error(⌧
ab

, D), as:

1
Z

⇣
p

na(a,b|D)(1� p)na(b,a|D) � p

na(b,a|D)(1� p)na(a,b|D)
⌘

Since p > 0.5, this di↵erence is strictly positive (negative)
i↵ p

na(a,b|D)
> p

na(b,a|D) (or pna(a,b|D)
< p

na(b,a|D)).

It turns out that repeatedly applying this rule until a local
optimum is found has been called local Kemenisation [13]. It
has been shown that any ranking thus produced satisfies the
generalised Condorcet criterion (i.e., if there is a partition
of the candidates (A1, A2) such that for every a 2 A1 and
b 2 A2 the majority prefers a to b, then every a 2 A1 must
be ranked above every b 2 A2 [28]). The above proof adds
that this is locally minimising the KT-error as well. Note
that although the proof assumes Mallows’ model, it seems
intuitive for any noise model to swap adjacent candidates if
one is ranked more often above the other, and that this is
independent of the (often unknown) value for p in the model.

4. EXPERIMENTS
We now empirically evaluate a range of voting rules, to de-
termine their performance in settings with incomplete rank-
ings. To this end, we first discuss the experimental setup
and data, followed by the voting rules and modifications to
deal with incomplete rankings. Then we discuss the results.

4.1 Setup and Data
We consider two types of experiments: those generated us-
ing synthetic data, and those based on real data from the
PrefLib library [24], specifically the Mechanical Turk Dots
and Puzzle experiments by [23]. We focus on these datasets
since they provide noisy (albeit complete) rankings and they
also include an objective ground truth. In more detail, for
the synthetic data, we use the repeated insertion method dis-
cussed in [10, 20] to generate noisy rankings according to the
Mallows’ model. Furthermore, to generate incomplete rank-
ings, we independently remove each candidate from each
agent with a probability q.

The real data consists of several datasets, each containing
up to 800 agents ranking 4 candidates. In the Dots exper-
iment, each voter was asked to rank 4 images according to
the number of dots they contained, whereas in the Puzzle
game the voters were asked to rank sliding puzzles according
to how close they were to the solution (see [23] for details).
The votes contain natural noise and are complete. To make
the votes incomplete, we remove each candidate from each
agent with probability q as before. In addition, we randomly
select n agents without replacement (where we vary n).

We repeat each experiment 1000 times with resampled
random values for candidates to determine the order in case
of ties in the scoring rules, and we measure the average
Kendall-tau distance (i.e., the number of inversions) of the
aggregated ranking to the true ranking. Note that this is
consistent with our objective of minimising the KT-error.



4.2 Voting Rules for Incomplete Votes
We consider the following common voting rules in the liter-
ature on rank aggregation. For each of the rules below, we
also add a variant with local search, where we improve the
rank produced by the corresponding rule by applying the
algorithm described in Section 3.3 until it converges.

Borda.
According to the Borda rule every agent assigns n�j points
to the candidate ranked in position j, which is equal to the
number of candidates it defeats. Candidates are then ranked
according to the sum of points for each candidate, which is
also called the Borda count. However, with incomplete votes,
it is not clear how many points should be awarded to the
candidates ranked by an agent and the ones missing. There
are many variants (see, e.g., [1, 26, 13]) and we consider the
following three: Pessimistic, where ranked candidates con-
tribute a score of (m� �

k

(i)) and unranked ones contribute
zero points; Optimistic, which is the same except that un-
ranked candidates contribute (m � |�

k

|); Scaled, where the
score is proportional to the position within the ranked can-
didates, m(|A

k

| � �

k

(i))/|A
k

|, and missing candidates con-
tribute zero. We choose these three since they vary widely
in their performance, whereas other variants we tried per-
formed similarly to one of these three.

Spearman’s Footrule.
Spearman’s footrule is another commonly-analysed voting
rule, especially for the Mallows’ noise model, since it is a 2-
approximation of Kemeny optimal but computable in poly-
nomial time. This rule minimises the sum of Spearman’s
distances of the complete ranking to the votes, where the
distance between two rankings � and ⌧ is given by S(�, ⌧) =P

i2A

|�(i) � ⌧(i)|. For complete rankings, this is done by
finding the minimal weighted matching of alternatives to
their ranks in the aggregate ranking, where the weight w

ij

of a candidate i in position j is given by w

ij

=
P

k

|�
k

(i)�
j| (computable in O �

m

3
�
using the Hungarian algorithm).

Now, as with Borda, there are several ways to extend this
rule to deal with incomplete votes. We choose Scaled Footrule
Optimal (SFO) from [13] since it is simple and computation-
ally tractable (unlike, e.g., using the induced distance [13]).
In detail, to compute the distance for candidate i at position
j, instead of using �

k

(i) and j, both of these are scaled ac-
cording to the total number of candidates. Specifically, the
weight is replaced by w

ij

=
P

k

|�
k

(i)/ |A
k

|� j/m|. This
formulation represents the idea that the missing alternatives
are equally spread in between the ranked alternatives.

Copeland.
The Copeland voting rule ranks individual candidates ac-
cording to the number of wins in pair-wise contests mi-
nus the number of losses. This rule can be readily ap-
plied to incomplete settings by only counting pairs when
both alternatives appear in an agent’s ranking. Formally,
let P (i, j) = |{k 2 A : i, j 2 A

k

^ i �
�k j}| denote the num-

ber of agents who prefer i to j. Then, candidates i’s score
is computed by:

|{j 6= i : P (i, j) > P (j, i)}|� |{j 6= i : P (i, j) < P (j, i)}|

Candidates then are ranked according to their score in de-
scending order.

Kemeny optimal.
We implement the Kemeny optimal rule by a mixed integer
optimisation problem on the weighted majority graph [7] for
which we (uniform) randomly select one optimal solution.

Optimal.
Computing the KT-error exactly is hard (Theorem 2), but
in practice we can still compute the Optimal for up to 6
candidates using a brute force approach. Specifically, the
KT-error is computed for all possible rankings and then the
one with the minimal KT-error is chosen. Note, however,
that the definition of KT-error for Mallows’ model depends
on the noise probability p. For the synthetic experiments we
simply use the p value that was used for generating the in-
stances. For the experiments with the real data we compute
the KT-error for a range of p values to establish the best
one experimentally. As before, if there are multiple optimal
solutions, we select one randomly.

4.3 Results
Figure 1 shows results using synthetic data with 6 candi-
dates, a Mallows noise probability p = 2

3 and a probability
of candidates missing of q = 0.7 for di↵erent values of the
number of agents. The right figure shows the results af-
ter applying local Kemenisation to each of the voting rules.
As expected, having more agents decreases the average dis-
tance to the true ranking for all rules. We also can observe
that Kemeny is indeed not optimal, with on average around
0.5 inversions more than Optimal. Interestingly, Copeland
performs significantly better than Kemeny, and at times on
par with Optimal. Even more striking is the significant im-
provement of most rules by local Kemenisation, which can
be observed by comparing the left to the right figure. We
have similar results for other values for q, but show only
q = 0.7, because here the di↵erences are most pronounced.

This can be seen in Figure 2, where we vary the probability
q of missing candidates and show the average distance for
all rules for a scenario with p = 2

3 and 25 agents. Similar
to the previous results, we see that Copeland consistently
outperforms Kemeny, and that Kemeny is relatively far from
optimal. Compared to the previous figure, we see here that
di↵erences between the rules are less pronounced for lower
values of q. In particular, after applying local Kemenisation,
none of the rules are statistically di↵erent up to q = 0.6.

The results so far have considered data where the syn-
thetic noise model is consistent with our objective. We now
consider the real data, which uses natural noise generated
through experiments rather than a particular model. To this
end, Figures 3 and 4 show the results from the Dots dataset
(number 1) and Puzzle (number 2) respectively, where we
vary the number of agents and set the probability of missing
a candidate to q = 0.7. Surprisingly, trends for both datasets
are very similar to the synthetic data: despite the fact that
Optimal is not necessarily optimal with real data (since it
assumes the Mallows’ model), it significantly outperforms all
other voting rules. Furthermore, Copeland outperforms Ke-
meny in most instances. Finally, again despite the fact that
it assumes Mallows’ model, local Kemenisation significantly
improves most voting rules, except of course Kemeny and
Optimal, which are already locally optimal, and Copeland
for some instances (within the standard error). We can see
the same trend for the other Dots and Puzzle instances (re-
sults not shown).



Figure 1: More agents decrease the average distance for all rules (6 candidates, p = 2
3 , and q = 0.7). Copeland

performs better than Kemeny, and local Kemenisation (right) significantly improves most other rules.

Figure 2: Missing candidates increase the average distance for all rules (6 candidates, p = 2
3 , and 25 agents).

Figure 3: The relative performance of the rules on the Dots data set 1 with a probability of removing a
candidate of 0.7 is similar to the synthetic data.



Table 1: The average distances for Optimal for di↵erent values of p are given on the Dots 1 problem instance
for 10 agents (top) and 50 agents (bottom) and for probabilities 0.0–1.0 of missing candidates. Except for
p = 0.5 these di↵erences are statistically insignificant (standard errors of above 0.02).

p 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.5000 3.004 3.03 2.964 3.063 2.998 3.002 2.974 2.94 2.984 2.946 3.055
0.6225 1.615 1.679 1.815 1.965 2.054 2.192 2.315 2.446 2.691 2.815 3.055
0.7311 1.606 1.683 1.822 1.991 2.059 2.203 2.314 2.435 2.681 2.844 3.055
0.8176 1.605 1.685 1.82 1.989 2.057 2.207 2.335 2.439 2.705 2.81 3.055
0.8808 1.607 1.684 1.819 1.992 2.059 2.212 2.326 2.43 2.694 2.815 3.055
0.9241 1.611 1.69 1.824 1.997 2.061 2.208 2.346 2.447 2.68 2.813 3.055
0.9526 1.611 1.676 1.824 1.989 2.055 2.216 2.323 2.451 2.703 2.816 3.055
0.5000 2.946 2.936 3.006 3.083 3.023 2.978 3.016 2.986 3.069 3.125 2.964
0.6225 0.733 0.834 0.89 1.006 1.274 1.405 1.597 1.887 2.2 2.684 2.964
0.7311 0.731 0.833 0.898 1.02 1.285 1.429 1.627 1.877 2.185 2.67 2.964
0.8176 0.733 0.834 0.9 1.023 1.285 1.424 1.629 1.884 2.207 2.66 2.964
0.8808 0.734 0.834 0.9 1.023 1.284 1.427 1.628 1.89 2.189 2.7 2.964
0.9241 0.732 0.832 0.899 1.025 1.284 1.424 1.626 1.88 2.186 2.71 2.964
0.9526 0.731 0.834 0.901 1.024 1.284 1.429 1.627 1.885 2.197 2.653 2.964

Figure 4: The performance of the rules on this Puzzle data set 2 with q = 0.7 shows the same trends as for
Dots.

Figure 5: Local Kemenisation reduces the error drastically with 100 candidates, 40 agents and p = 2
3 .



We furthermore considered the e↵ect of the unknown noise
probability p on the performance of Optimal with real data.
The results are shown in Table 1 for a range of q and p values,
where the p values are computed using a generalised noise
model [12] p = e

↵

1+e

↵ and ↵ 2 {0, 0.5, . . . , 3}. Interestingly,
the results are not statistically significant for di↵erent values
of p (except 0.5), suggesting that Optimal is robust with
respect to the choice of p.

We also produced synthetic experiments for larger num-
bers of candidates (100) and more agents (up to 200). Al-
though we were unable to compute Kemeny and Optimal
rankings for these settings, the trends for the remaining vot-
ing rules were largely the same. A representative example
in shown in Figure 5. As before, local Kemenisation signifi-
cantly reduces the error.

5. RELATED WORK
The average Kendall-tau distance (among other measures) is
often used in experiments with noisy and incomplete data to
compare the e↵ectiveness of a set of rules over a large set of
problem instances, e.g., [11, 13]. However, this is typically
done implicitly and without noticing that minimising this
error is a significantly di↵erent objective from maximising
the likelihood. The objective of minimising the error is first
explicitly mentioned in a technical report [29, Section 5].
They say it is (more) di�cult to optimise for this than max-
imising the likelihood (without proof) as “no closed form
solution exists”, which is in line with our hardness result.
Later this statistical decision-theoretic viewpoint on social
choice and the hardness proof have been formalised [27], but
only considers complete votes.

A related argument against using maximum likelihood as
the objective is that optimising for a single noise model may
not be optimal in realistic settings, because the noise could
take unpredictable forms [4, 23]. This has led to the de-
sign of a “modal” ranking rule that is robust against any
“reasonable” noise model [4]. Following a similar argument,
it is relevant to learn a mixture of (Mallows) noise models,
e.g., through a Monte Carlo based approximation [21]. Such
approaches can be seen as complementary to the direction
we take in this paper. In fact, we argue that the ultimate
objective should be to minimise the error based on a learned
mixture of general noise models.

Specifically regarding incomplete votes, some work has
considered machine learning techniques that view the miss-
ing ranking information as hidden variables, which are then
inferred from other votes. For example, Cheng et al. [6]
use the Expectation–Maximisation algorithm. Other exper-
iments with real data show the performance of a number
of “existing, standard, algorithms from machine learning” to
infer the missing information [11]. For an overview of the
workflow of designing social choice mechanisms using ma-
chine learning see the paper by Xia [30].

Much of the work in this area uses information retrieval
as its main application domain (e.g., [13, 19]) and machine
learning is used as an adaptive voting rule which learns how
to rank the documents. An important challenge in this do-
main is scalability, especially for search engines, where the
number of candidates (documents) can be as large as several
billions. So far, this problem has mostly been approached
as a machine learning classification task. However, other
voting rules such as SFO, Borda, and a range of methods
using a Markov decision model of the votes, have been eval-

uated on a web page data set [13]. Consistent with our
findings, their results show that the rule said to be similar
to Copeland (called MC4) performs the best on this set. Im-
portantly, however, the “ground truth” in such applications
is not a full rank, but rather whether a document is rele-
vant or not. As a result, the objective in those approaches
is di↵erent (they are more concerned with measures such as
recall and precision and other measures specifically relevant
to information retrieval). Nevertheless, our results support
the main conclusions from these papers in that the Copeland
rule seems an appropriate choice for most levels of noise and
missing candidates.

6. CONCLUSIONS
We have shown that voting rules which maximise the likeli-
hood of a ranking do not necessarily minimise the rank ag-
gregation error, i.e., the expected distance to the true rank-
ing. Specifically, for rank aggregation with significant noise
and missing votes, maximising the likelihood (i.e., using Ke-
meny’s rule assuming Mallows’ model) can result in a signif-
icantly higher error than computationally simpler methods
such as Copeland. While the results are particularly pro-
nounced with missing votes, we have shown that this dis-
crepancy can occur even when votes are complete. Further-
more, we have shown that Optimal performs best in both
synthetic and real data settings, even when we do not know
the noise parameter exactly. In terms of theoretical results,
for Mallows’ model we have shown that computing this error
is hard. Furthermore, we proved that an e�cient procedure
called local Kemenisation, which is known to improve the
likelihood, also reduces the error, and that in fact this leads
to a significant performance improvement for varying incom-
pleteness and noise levels.

The next logical step is to design new voting rules with
the objective of minimising the error in settings with incom-
plete and noisy observations. This would be particularly in-
teresting for more general (mixtures of) noise models. These
extensions also give rise to a number of questions regarding
the complexity class of the problems of minimising the rank
aggregation error. In particular, although we showed that
computing the error is #P-hard, determining whether the
complexity of finding the ranking with minimal error for the
Mallows’ model is also #P-hard is still an open problem.
Other extensions include considering di↵erent incomplete-
ness models (e.g., where the probability of missing depends
on the position in the true ranking) and di↵erent distance
measures (e.g., winner determination, top-k, or more general
weighted measures). Additionally, it would be interesting
to compare existing voting rules to approaches that apply
machine learning methods, both through learning missing
data [11], but also by directly applying classifiers as is com-
mon in the“learning to rank” information retrieval field [19].
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ABSTRACT
Preference profiles that are single-peaked on trees enjoy de-
sirable properties: they admit a Condorcet winner (Demange
1982), and there are hard voting problems that become
tractable on this domain (Yu et al. 2013). Trick (1989) pro-
posed a polynomial-time algorithm that finds some tree with
respect to which a given preference profile is single-peaked.
However, some voting problems are only known to be easy
for profiles that are single-peaked on “nice” trees, and Trick’s
algorithm provides no guarantees on the properties of the
tree that it outputs. To overcome this issue, we build on the
work of Trick and Yu et al. to develop a structural approach
that enables us to compactly represent all trees with respect
to which a given profile is single-peaked. We show how to
use this representation to e�ciently find the “best” tree for
a given profile, according to a number of criteria; for other
criteria, we obtain NP-hardness results. In particular, we
show that it is NP-hard to decide whether an input profile is
single-peaked with respect to a given tree. To demonstrate
the applicability of our framework, we use it to identify a
new class of profiles that admit an e�cient algorithm for
a popular variant of the Chamberlin–Courant (Chamberlin
and Courant 1983) rule.

1. INTRODUCTION
Preference aggregation is a di�cult task when voters’ pref-

erences may be arbitrary: one has to deal with voting para-
doxes (Arrow 1951) and computationally hard problems
(Brandt et al. 2013). This observation motivates the study
of domain restrictions, i.e., special classes of voters’ prefer-
ences that rule out paradoxical outcomes and/or allow one
to circumvent computational hardness results. Perhaps the
most-studied restricted domain is that of single-peaked pref-
erences (Black 1948). This domain captures profiles where
voters’ preferences are determined by candidates’ positions
on a single issue, and has many desirable properties: for
instance, single-peaked elections always have a Condorcet
winner (a candidate that is preferred to every other can-
didate by a majority of voters), admit a non-manipulable
voting rule (Moulin 1991), and allow for an e�cient winner
determination algorithm for a popular committee selection

Copyright c� 2016, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.
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Figure 1: The ‘attachment digraph’ computed

for the profile {kfedghcijba, dcbeafghijk, gfhiedcbajk}
which is single-peaked on 336 di↵erent trees. All

of them appear as subtrees of the above digraph,

which can be computed in O(|V | · |C|2) time. The

black edges must appear in any tree; for each free
vertex with gray outgoing arcs, we choose exactly

one of them. The transitivity among the gray edges

will be crucial to our approach.

rule (Betzler et al. 2013).
Demange (1982) introduced a weaker domain restriction,

namely, single-peakedness on a tree. Briefly, a profile is
single-peaked on a tree if candidates can be mapped to the
vertices of some tree so that the restriction of this profile
to every path in this tree is single-peaked. This is a con-
siderably broader domain than that of the single-peaked
elections, which, nevertheless, retains some of the desirable
properties of the latter: profiles that are single-peaked on a
tree always have a Condorcet winner (Demange 1982), and
there are committee selection problems that become easier
when preferences are single-peaked on a tree (Yu et al. 2013).
However, some of the algorithms for this domain require the
input profile to be single-peaked on a “nice” tree, such as a
tree with a small number of leaves or a star (Yu et al. 2013);
indeed, positive results for single-peaked preferences can also
be viewed in this light, as they require the preferences to be
single-peaked on a specific tree, namely, a line (path).

Now, forcing Trick’s algorithm to output a“nice” tree is not
a trivial task: indeed, this algorithm may output a complex
tree even when the input profile is single-peaked on a line.
Fortunately, there are e�cient algorithms for recognizing
when a given profile is single-peaked on a line (Bartholdi
and Trick 1986; Doignon and Falmagne 1994; Esco�er et al.
2008), and Yu et al. (2013) explain how to modify Trick’s
algorithm so that it outputs a tree with the minimum number
of leaves and how to recognise when a profile is single-peaked
on a star. However, prior to this work, no such algorithms
were known for other types of “nice” trees, such as trees that
have bounded diameter or a small number of internal nodes;



in fact, it was an open question whether, given a profile V
and a tree T , one can check in polynomial time whether V
is single-peaked on T .

In this paper, we propose a general framework for answer-
ing such questions, and use it to obtain polynomial-time
algorithms for identifying “nice” trees when they exist, for
several appealing notions of “niceness”. Specifically, we define
a digraph that encodes, in a compact fashion, all trees with
respect to which a given profile is single-peaked, an exam-
ple is shown in Figure 1. This digraph enables us to count
and/or enumerate all such trees. Moreover, we show that it
has many useful structural properties, which can be exploited
to e�ciently find trees that have, e.g., the minimum degree,
diameter, or number of internal nodes among all trees with
respect to which a given profile is single-peaked, or to decide
if a given profile is single-peaked on some specific type of tree,
such as a caterpillar or a subdivision of a star (see Section 2
for definitions). However, there are limits to what we can
accomplish in this way: we show that it is NP-hard to decide
whether a given profile is single-peaked on a regular tree.
Moreover, given a profile and a tree, it is NP-hard to decide
if this profile is single-peaked on this specific tree.

Knowing whether a profile is single-peaked on a “nice” tree
enables us to develop stronger intuition about the structure
of voters’ preferences. However, our recognition algorithms
also have more tangible benefits: for at least one type of“nice”
trees that can be identified by our algorithm (namely, trees
with few internal vertices), we develop a winner determina-
tion algorithm for a variant of the Chamberlin–Courant com-
mittee selection rule (Chamberlin and Courant 1983) that,
under plausible complexity assumptions, is more e�cient
than any algorithm for this rule under general preferences.
Importantly, our winner determination algorithm works di-
rectly with the underlying tree, i.e., it relies on having an
e�cient procedure for constructing a tree with few internal
vertices. We expect that similar results can be obtained
for other types of trees that we can recognise; we leave this
question for future work.

2. PRELIMINARIES
For a finite set of candidates C, a profile V over C is a

list of strict total orders over C; elements of V are called
votes, or preference orders. We will view a vote v 2 V as a
list of candidates, and use Python-like indices to refer to its
entries: v[1], v[2], v[–1] are v’s most, second-most, and least
preferred candidates respectively, and v[1:k] is the set of v’s k
most preferred candidates. For readability, we write c0 �

v

c
to indicate that c0 comes before c in the vote v. For a subset
C0 ✓ C of candidates, we denote by v�

C

0 the preference order
obtained from v by restricting it to C0 ⇥ C0.
A tree is a connected acyclic graph. A leaf of a tree is a

vertex of degree 1. Vertices that are not leaves are internal.
A path is a tree with exactly two leaves. The diameter of
a tree T is the number of edges in a longest simple path in
T . A star is a tree K1,n that has one internal vertex (the
center) and n leaves. A k-regular tree is a tree in which every
internal vertex has degree k. Note that paths are 2-regular
(uniquely), and the star K1,n is n-regular. A caterpillar is a
tree in which every vertex is within distance 1 of a central
path; in other words, removing all leaves from a caterpillar
results in a path. A lobster is a tree in which every vertex is
within distance 2 of a central path. A subdivision of a star is
a tree obtained from a star by replacing its edges by paths.

A tree decomposition of a graph G is given by a tree T
and map � : V (T )! P(V (G)) that associates each vertex
v of T with a bag �(v) ✓ V (G) of vertices of G, in such a
way that for each w 2 V (G), the set ��1(w) is non-empty
and connected in T , and for each edge {u,w} 2 E(G), there
is a bag �(v) with {u,w} ✓ �(v). The width of a tree
decomposition (T,�) is given by max

v2V (T ) |�(v)| � 1. A
tree decomposition (T,�) is called a path decomposition if
T is a path. The path-width of a graph G is the minimum
width of a path decomposition of G. See Bodlaender (1994)
for a survey of these notions.
A profile V over C is single-peaked (on a line) if there is

a linear order < on C such that for every v 2 V , we have
x �

v

y whenever v[1] < x < y or y < x < v[1]. V is single-
peaked on T , where T is a tree with vertex set C, if V is
single-peaked when restricted to the vertex set of every path
in T . Equivalently, V is single-peaked on T if for every v 2 V
and each k = 1, . . . , |C|, the set v[1:k] induces a subtree of T .
Given a profile V , we denote the set of all trees T such that
V is single-peaked on T by T (V ); we say that trees in T (V )
are suitable for V . A profile V over C is single-peaked on a
tree if T (V ) 6= ?. In particular, V is single-peaked on a line
if and only if it is single-peaked on a tree T that is a path.

A digraph D = (V, A) is a directed graph with no self-loops
or multiple arcs. An arc (u, v) 2 A points from its tail u to
its head v. We will write uv for (u, v). An acyclic digraph
(a dag) is a digraph with no directed cycles. For a vertex v,
its out-degree (resp., in-degree) d+(v) (resp., d�(v)) is the
number of arcs whose tail (resp., head) is v. A sink is a
vertex v with d+(v) = 0, a source is a vertex with d�(v) = 0.
Every dag has at least one sink and one source.
Given a digraph D = (V, A), we can forget about its ori-

entation to obtain an underlying graph G = (V, E) where
{u, v} 2 E if and only if uv 2 A or vu 2 A.

3. THE ATTACHMENT DIGRAPH
We now introduce the essential tool in our study of the

set T (V ). Consider a profile V over a candidate set C that
is single-peaked on some tree: T (V ) 6= ?. We associate to
this profile its attachment digraph D with vertex set C: this
digraph is obtained by running Algorithm 1, which builds
on the ideas of Trick (1989) and Yu et al. (2013).

Algorithm 1 Build attachment digraph D = (C,A) of V

D  (C,A), A ? . D is the empty digraph on C
C0  C
while |C0| > 3 do

L {(v�
C

0)[–1] : v 2 V }
for each candidate c 2 L do

B
c

=
T

v2V

B(v�
C

0 , c)
if B

c

= ? then

return fail . V not single-peaked on any tree
else

add arcs cc0 for each c0 2 B
c

to A

C0  C0 \ L
return D

This algorithm runs in time O(|V | · |C|2). It uses the
operator B(v, c) that takes as input a vote v and a candidate c,
and returns a constraint on the candidates c0 that c can be



attached to in suitable trees as a leaf. It is defined as

B(v, c) =

(
{c0 : c0 �

v

c} if v[1] 6= c,

{v[2]} if v[1] = c.

This operator can be computed in time O(|C|). To see that
the definition makes sense, suppose that c is a leaf. If it is
not the top candidate in vote v, then it must be attached to
some c0 that v prefers to c, since every path from v[1] to c
goes through the parent of c. On the other hand, if c is the
top candidate in v, then c must be attached to the candidate
c0 ranked immediately below c by v, as otherwise the path
from c to v[2] violates the single-peakedness condition.

We start with a few easy properties of attachment digraphs.

Proposition 1. Any attachment digraph (C,A) is acyclic
and has at most two sinks. If it only has one sink t, then
d�(t) > 2.

Proof. We follow the proof of Theorem 6.1 in the work
of Yu et. al. (2013). Suppose that the while loop is executed
f � 1 times, and denote the sets L found at each iteration
by L1, . . . , Lf�1. Set L

f

:= C \ (L1 [ · · · [ L
f�1). Then

L1, . . . , Lf

is a partition of C. Since for every c 2 C \ L
f

we have B
c

6= ?, at least one arc with tail c is added to A.
Hence no c 2 C \L

f

can be a sink, so all sinks are in L
f

. The
condition of the while loop implies that |L

f

| 6 2, so there
are at most two sinks. It also implies that |L

f�1 [ L
f

| > 3,
which gives d�(t) > 2.

For acyclicity, note that since B(v�
C

0 , c) ✓ C0, we have
B

c

✓ C0 at the stage when we compute B
c

. Thus if c 2 L
i

then all arcs with tail c point into L
i+1 [ · · · [ L

f

. So (C,A)
has a topological order given by a linearisation of the partial
order induced by the partition L1, . . . , Lf

of C.

Often, it will be convenient to use the pointed attachment
digraph D+ of a profile, which is obtained from D by inserting
a single arc (arbitrarily directed) between the two sinks in
case there are two sinks. Thus, D+ always has exactly one
sink.
We call a subset F ✓ A of the arcs of a digraph an

arc-function if every vertex that is not a sink has exactly
one outgoing arc in F . The reason we are interested in
attachment digraphs and their arc functions is given in the
following theorem, which follows from results of Trick (1989).

Theorem 2. For every profile V , the set T (V ) is in bi-
jection with the set of arc-functions for D+, the pointed
attachment digraph of V . Thus, every tree in T (V ) appears
as a subgraph of D+, once we forget about its orientation.

Indeed, given an arc-function F for the pointed attach-
ment digraph, we can take the arcs in F , forget about their
orientation, and obtain a suitable tree for V .

Corollary 3. The number of suitable trees in T (V ) is
equal to the product of the out-degrees of the non-sink vertices
of D+. Hence we can compute |T (V )| in polynomial time.

It turns out that attachment digraphs have a lot of struc-
ture beyond the results of Proposition 1. A key property,
which will allow us to use essentially greedy algorithms, is
what we call circumtransitivity.

Definition 1. A dag D = (C,A) is circumtransitive if
its vertices can be partitioned into a set !C of forced vertices
and a set ◆C = C \ !C of free vertices so that

1. every forced vertex has out-degree at most one, and all
vertices reachable from it are also forced, and

2. every free vertex has out-degree at least two, and when-
ever x and y are free vertices with xy, yz 2 A, then
xz 2 A.

Note that in particular the sinks of D are forced. A circum-
transitive dag thus consists of an inner part (the forced part)
that even after forgetting about orientations is acyclic, and
an outer part that is transitively attached to the inner part.
Further, since every free vertex starts a path to a sink, by
transitivity it must have an arc to some forced vertex.

Theorem 4. Every attachment digraph (C,A) is circum-
transitive.

Proof. We will argue that Definition 1 is satisfied by
taking the partition

!C = {c : d+(c) 6 1}, ◆C = {c : d+(c) > 2}.

Forced: Let x 2 !C be a forced vertex. If d+(x) = 0, there is
nothing to prove, so assume that d+(x) = 1, i.e., xy 2 A for
some y 2 C. We will show that d+(y) 2 {0, 1}.
If y is a sink, we are done, so suppose yz 2 A for some

z 2 C. Then xz 62 A and so z 62 B
x

. This means that
z 62 B(v�

C

0 , x) for some v 2 V , where C0 is the set of
candidates remaining in the while-loop iteration in which
x is attached. Note that y 2 C0 and hence z 2 C0 as well.
Write v̄ = v�

C

0 . We consider two cases:
(i) x 6= v̄[1]. Then xy 2 A implies y �

v

x. Consider now
the iteration in which y is attached. If y is ranked first in v
at that point, then by construction |B

y

| = 1, so we are done.
Otherwise yz 2 A implies z �

v

y. But then by transitivity
z �

v

x, so z 2 B(v̄, x), a contradiction.
(ii) x = v̄[1]. Then xy 2 A implies that y is ranked second

in v̄. Hence, in the iteration in which y is attached, it must
be the top candidate in v, and therefore |B

y

| = 1.

Free: Consider vertices x, y, z 2 C with x, y 2 ◆C and xy, yz 2
A. At x’s attaching time, no vote can begin in x since
d+(x) > 1. Thus since xy 2 A we have y �

v

x for all v 2 V .
Similarly, since yz 2 A and d+(y) > 1 we have z �

v

y for
all v 2 V . Hence, by transitivity, z �

v

x for all v 2 V , so
z 2 B

x

and xz 2 A.

It follows that every tree in T (V ) contains the forced part
of D+ as a subtree (after forgetting orientations).

Finally, let us study the free vertices ◆C more closely.

Proposition 5. Every free vertex of D+ = (C,A) has
arcs to at least two forced vertices.

Proof. We have observed that every free vertex has an
arc to at least one forced vertex. Assume for the sake of
contradiction that there is a free vertex x that only has a
single arc to a forced vertex; let this forced vertex be z. Take
a topological ordering of D+; among all free vertices y such
that yz 2 A but yz0 62 A for every z0 2 !C \ {z}, let v be the
one that minimises the distance to z in the topological order.
Since v is free, it also has an arc to some other vertex w,
which is free by the choice of v. Now, w has an arc to some
forced vertex z0. By transitivity we have vz0 2 A, and hence
z0 = z. As w appears between v and z in the topological
order, this contradicts minimality of the distance between v
and z.



Proposition 6. For each free vertex x 2 ◆C of D+ =
(C,A), the set {y 2 !C : xy 2 A} induces a subtree in the
undirected version of D+.

Proof. Suppose A contains arcs xy and xz where y, z 2
!C . Let P be the unique y–z path in the undirected version

of D+ that is contained in !C , and let C
P

be its vertex set.
We will argue that C

P

✓ B
x

. Fix a tree T 2 T (V ); note
that P is a path in T . Pick a vote v 2 V . Since |B

x

| > 1, we
have y �

v

x, z �
v

x. Take a top segment of v that includes y
and z, but not x. This set induces a subtree of T , and hence
contains C

P

. Thus, w �
v

x for each w 2 C
P

. As this holds
for each v 2 V , x can be attached to any vertex of C

P

.

Taken together, Propositions 5 and 6 imply that each
free vertex can be attached to two forced vertices that are
adjacent to each other in D+.

4. RECOGNITION ALGORITHMS
Suppose we are given a profile V with T (V ) 6= ? and wish

to find trees in T (V ) that satisfy additional desiderata. As
argued above, this can be done by computing the attachment
digraph and then choosing the arc-function appropriately.
Next, we give examples to that e↵ect; the list is not meant
to be exhaustive and, in addition to new results, includes
already known results for paths, stars, and trees with few
leaves.

Theorem 7. Given a profile V that is single-peaked on
a tree, we can find in polynomial time a suitable tree that
among the trees in T (V ) has a

1. minimum number of leaves,

2. minimum number of internal vertices,

3. minimum diameter,

4. minimum max-degree,

5. minimum path-width.

Further, we can decide in polynomial time whether a given
profile is single-peaked on a

6. line,

7. star,

8. caterpillar,

9. lobster,

10. subdivision of a star.

Proof sketches. Fix a profile V over a candidate set C,
|C| > 3, and compute D, the attachment digraph of V , and
D+, the pointed attachment digraph.
1. This has already been done by Yu et al. (2013). Their

algorithm can be phrased in the language of attachment
digraphs as follows: first we find a maximum partial arc-
function such that no vertex has two incoming arcs, and then
we extend it to a full arc-function arbitrarily. The first step
can be achieved by matching techniques (as explained by Yu
et al.) or by matroid intersection of two partition matroids
(Gabow and Tarjan 1984).

2. We only need to decide how to attach free vertices.
By Propositions 5 and 6, each x 2 ◆C can be attached to
two forced vertices that are adjacent to each other. Thus, if
| !C | > 2, we can attach x to a forced vertex that is internal

in the forced part. Then every leaf of the forced part remains
a leaf, and every free vertex becomes a leaf, which is clearly
optimal. If | !C | = 2 (note that | !C | > 2 by Proposition 5),
we can pick y 2 !C and attach all free vertices to y.

3. Run the algorithm of part 2; this produces a tree of
the same diameter as the forced part if | !C | = 2 or else of
diameter one larger than the forced part, which must be
minimal.
4. We show how to find a suitable tree with max-degree

at most k if there is one, for each fixed k. By repeatedly
calling this algorithm with k = 2, 3, . . . , |C| � 1, we find a
tree of minimum max-degree. The algorithm is similar to
part 1: we check whether there is an arc-function for D
such that no vertex has more than k � 1 incoming arcs in
the arc-function. Such an arc-function, if it exists, can be
found using flow techniques or by matroid intersection of two
partition matroids.
5. The path-width of any suitable tree is at least the

path-width of the forced part. For trees, we can find a path
decomposition of minimum width in linear time (Sche✏er
1990). Run this algorithm on the forced part. Then attach
free vertices to forced vertices, prioritising forced vertices
that appear in a bag that is not of maximum cardinality
among the bags in the path decomposition. If such a bag
is found, duplicate it and add the free vertex to one of the
copies. If some free vertex v is only attachable to forced
vertices that only appear in maximum-cardinality bags, we
need to fix things up. Take two di↵erent adjacent forced
vertices w and x to which v is attachable (such vertices are
guaranteed to exist). Take the left-most bag in which w and
x appear together and duplicate it. Suppose that w does not
appear to the left of the left copy. Then replace w by v in that
copy and attach v to x. This yields a path-decomposition of
width equal to the path-width of the forced part, which is
optimal.

6. The fastest algorithms for the line are given by Doignon
and Falmagne (1994) and Esco�er et al. (2008); they do
not rely on the pre-computation of the attachment digraph
and are thus faster than anything we can o↵er. That said,
running algorithms for parts 1 or 4 above will return a path
if possible, and if not, return something as close to a path as
possible (according to the various senses).

7. As observed by Demange (1982) and Yu et al. (2013), a
profile is single-peaked on a star if and only if there exists a
candidate that is ranked first or second in every vote. Hence
the profiles single-peaked on a star form a regular language
(under sensible encodings) and can be quickly recognised. In
our framework we can look for a sink in D such that every
non-sink vertex points to it.

8. A given profile can only be single-peaked on a caterpillar
if the forced part of D+ is a caterpillar. If so, use the
algorithm from part 2 to make every free vertex a leaf. The
result is still a caterpillar. The lobster case (9) is similar.
10. The forced part is either a path or a subdivision of a

star K1,s with s > 2. In the first case, it su�ces to check
whether all free vertices attach to a single vertex of this path
(which then becomes the center). In the second case, first
attach as many free vertices to the center as possible. By
Proposition 6, the remaining free vertices can be attached
to at most one of the leaves of the forced subdivision of a
star. Then for each leaf separately, find a longest path in the
sub-dag of free vertices attachable to it, and check that the
union of these longest paths contains all the remaining free



vertices.

Applying these algorithms to the example in Figure 1, we
see that suitable trees have between three and eight leaves,
their diameter at least four, they can have max-degree three
and path-width one, and include a caterpillar but not a
subdivision of a star.

5. HARDNESS RESULTS
The algorithms in the proof of Theorem 7 enable us to

answer a wide range of questions about the set T (V ). The
NP-hardness results in this section, however, show that it is
likely that not every such question can be answered e�ciently.

Consider the following computational problem.

Single-peaked tree labelling

Instance: Profile V over C, unlabelled tree T on |C| vertices
Question: Is there a labelling of the vertices of T with candi-
dates in C s.t. V is single-peaked on that labelled tree?

Theorem 8. Problem Single-peaked tree labelling

is NP-complete even if the input trees are restricted to diam-
eter at most four or to max-degree at most three.

Proof. The problem is in NP since for a given labelling
we can easily check whether it makes the profile single-peaked
on T .
For the hardness proof, we reduce from x3c. Given an

x3c-instance with objects x1, . . . , x3m and sets s1, . . . , sn we
construct a tree T by taking a star K1,n and attaching three
fresh leaves to exactly m of the leaves of the star. Then T
has diameter four. We construct a profile over the candidate
set {?, x1, . . . , x3m, s1, . . . , sn}, with one vote for each object
and for each set. In the following, all indi↵erences can be
resolved arbitrarily.

For each object x
i

, vote to force x
i

to be attached to ? or
to a set containing x

i

:

?, {sets containing x
i

}, x
i

, {other sets}, {other objects}.
For each set s

j

, vote to force an edge from ? to s
j

:

?, s
j

, {sets other than s
j

}, {objects}.
If there is a valid partition in the x3c-instance selecting

precisely the sets s
j1 , . . . , sjm , then we can label T as follows:

The center of the star is ?. Its n neighbours are the s
j

s. We
assign the s

jis to the neighbours of ? of degree four. Then
we can assign each object to its set s

ji in the x3c-solution.
By considering top-initial segments of the votes given above,
we see that this makes all votes single-peaked on this tree.

s
jm+1 s

jm+2 s
jm+3 . . . s

jr . . . s
jn

?

s
j1 s

j2 . . . s
jm

x
i1 x

i2 x
i3 x

i4 x
i5 x

i6 . . . x
i3m�2 x

i3m�1 x
i3m

If there is a labelling of T making all the votes single-
peaked, then there must be an x3c-solution. To see this, first
note that the vertex labelled ? must have degree at least n
because of the set votes. There is only one such vertex in T ,
namely the center, which is thus labelled ?. It has exactly
n neighbours, which then must all be labelled by some s

j

.
This leaves us to decide which vertices are labelled by which
objects. Since we have already labelled all neighbours of
the center, the objects must be attached to s

j

s. Hence by
the constraints of the object votes, the labelling induces an
x3c-solution.

By copying the center vertex and adding some peripheral
vertices, we can adjust this reduction so that T ’s maximum
degree is three. Notice that the problem is (trivially) fixed-
parameter tractable with parameter k = |C| by just trying
all k! possible labellings of the input tree.

We can use a similar reduction to prove a hardness result
complementing the easiness results of Theorem 7 (we omit
the proof). Recall that a tree is k-regular if every non-leaf
vertex has degree k.

Theorem 9. Given a profile V , it is NP-complete to de-
cide whether there exists a positive integer k such that V is
single-peaked on a k-regular tree. The problem is also hard
for each fixed k > 4.

6. APPLICATION:
COMMITTEE SELECTION

We will now demonstrate how to apply one of the recogni-
tion algorithms presented in the proof of Theorem 7 to obtain
an algorithm for a committee selection problem that is known
to be NP-hard for unrestricted preferences. Specifically, the
computational problem we consider is winner determination
under the Chamberlin–Courant rule with Borda misrepresen-
tation function; our results extend to other misrepresentation
functions that satisfy a mild condition. Our algorithm can
be used for any profile that is single-peaked on a tree and
is e�cient for trees that have few internal vertices provided
that the target committee size is not too large.
We start by defining the Chamberlin–Courant rule and

providing a brief summary of complexity results for it, fol-
lowed by the description of our algorithm and a proof of
correctness.

Chamberlin and Courant (1983) propose a family of rules
that take a candidate set C, a profile V over this set and
a target committee size k as an input, and output a subset
of candidates (committee) of size k. Given a candidate set
C, |C| = m, every vector s = (s1, . . . , sm) of non-negative
integers with 0 = s1 6 . . . 6 s

m

defines a positional misrepre-
sentation function µs : V ⇥ 2C ! Z as follows: µs(v, C

0) = s
i

if v ranks her most preferred candidate in C0 in position
i. The (utilitarian version of the) Chamberlin–Courant rule
outputs some committee C0 of size k that minimises the
quantity

P
v2V

µs(v,C
0) (which we call the s-score of C0)

over all size-k subsets of C. The misrepresentation function
associated with the vector s = (0, 1, . . . ,m� 1) is known as
the Borda misrepresentation function.

Finding a winning committee for the Chamberlin–Courant
rule is known to be NP-hard, even for the Borda misrepre-
sentation function (Lu and Boutilier 2011); however, this
problem can be solved in polynomial time for an arbitrary
misrepresentation function if the input profile is single-peaked
(Betzler et al. 2013) or, more broadly, has bounded single-
peaked width (Cornaz et al. 2012), as well as for a large class
of misrepresentation functions including the Borda misrep-
resentation function if the input profile is single-peaked on
a star (Yu et al. 2013). Yu et al. also provide an algorithm
for profiles that are single-peaked on a tree, which works
for arbitrary misrepresentation functions; its running time is
polynomial in |V | and the quantities |C|� and k�, where � is
the number of leaves of a suitable tree (they also explain how
to find a suitable tree with the minimum number of leaves).
While the latter algorithm is useful for profiles that are

single-peaked on a tree with few leaves, we will now present an



algorithm that is tailored for profiles that are single-peaked
on trees with few internal vertices. It is inspired by Yu et
al.’s algorithm for preferences that are single-peaked on a
star.

Theorem 10. Given a candidate set C, |C| = m, a profile
V over C, |V | = n, a tree T 2 T (V ) with ⌘ internal vertices
such that V is single-peaked on T , and a target committee
size k > 1, we can find a winning committee of size k for
(C, V ) under the Chamberlin–Courant rule with the Borda
misrepresentation function in time poly(n,m, (k + 1)⌘).

Proof. Given a candidate c 2 C, let f(c) be the number
of voters in V that rank c first, and let C� be the set of
candidates that correspond to the internal vertices of T .
For each candidate c 2 C�, let ch(c) denote the set of leaf
candidates in C \ C� that are adjacent to c in T .
Our algorithm proceeds as follows. For each candidate

c 2 C� it guesses a pair (b(c), `(c)), where b(c) 2 {0, 1}
and 0 6 `(c) 6 k: b(c) indicates whether c itself is in the
committee and `(c) indicates how many candidates in ch(c)
are in the committee. We require

P
c2C

�(b(c) + `(c)) = k.
Next, it sets C0 = {c 2 C� : b(c) = 1}, and then for each
c 2 C� it orders the candidates in ch(c) in non-increasing
order of f(c) (breaking ties according to a fixed ordering ⇤
over C), and adds the first `(c) candidates in this order to
C0.

Each guess corresponds to a committee of size k. Guessing
can be implemented deterministically: consider all options for
the collection {(b(c), `(c))}

c2C

� (there are at most 2⌘ ·(k+1)⌘

possibilities), compute the score of the resulting committee
for each option, and output the best one.

It remains to argue that this algorithm finds a committee
with the minimum Borda score. To see this, let S be the set
of all size-k committees with the minimum Borda score, and
pick a committee S⇤ from argmax

C

02S |C0 \ C�|, breaking
ties according to ⇤ (note that this means that there is no
set S 2 argmax

C

02S |C0 \ C�| such that S⇤ \ S = {c},
S \ S⇤ = {c0} and c0 ⇤ c). For each c 2 C�, let b⇤(c) = 1 if
c 2 S⇤ and b⇤(c) = 0 otherwise, and let `⇤(c) = |ch(c) \ S⇤|.
Our algorithm will consider the collection {(b⇤(c), `⇤(c))}

c2C

�

at some point, and output a committee S. We will now argue
that S = S⇤.

Indeed, we have C� \ S = C� \ S⇤, so it remains to argue
that ch(c) \ S⇤ = ch(c) \ S for each c 2 C�. Suppose for
the sake of contradiction that this is not the case, i.e., there
exists a c 2 C� and a pair of candidates c0, c00 2 ch(c) with
c0 2 S \ S⇤, c00 2 S⇤ \ S. If c 2 S⇤, consider the committee
S0 = (S⇤ \ {c00}) [ {c0}. We claim that S0 has the same
Borda score as S⇤. Indeed, the voters who do not rank
c0 or c00 first prefer c to either of these two candidates, so
they are una↵ected by the change, the misrepresentation of
the f(c00) voters who rank c00 first changes from 0 to 1, the
misrepresentation of the f(c0) voters who rank c0 first changes
from 1 to 0, and we have f(c0) > f(c00) by construction of S.
As we also have c0 ⇤ c00 by construction of S, this contradicts
our choice of S⇤ from argmax

S

02S |S0 \ C�|.
Now, suppose that c 62 S⇤. Consider the committee S0 =

(S⇤ \ {c00}) [ {c}. Again, we claim that S0 has the same
Borda score as S⇤: we increase the misrepresentation of each
of the f(c00) voters who rank c00 first by 1 (as all of them
rank c second), decrease the misrepresentation of each of the
f(c0) voters who rank c0 first by at least 1 (as all of them
rank c second), and do not increase the misrepresentation

of any other voter (as all of them prefer c to c00). Thus, the
Borda score of S0 does not exceed that of S⇤, but |S0 \C�| >
|S⇤ \ C�|, a contradiction with our choice of S⇤.

It is clear from our proof that Theorem 10 holds for every
positional misrepresentation function whose score vector sat-
isfies s1 = 0, s2 = 1, s3 > 2. Observe also that our algorithm
is in FPT with respect to the combined parameter (k, ⌘); in
contrast, for general preferences computing the Chamberlin–
Courant winners is W[2]-hard with respect to k even under
the Borda misrepresentation function (Betzler et al. 2013).
Moreover, the algorithm of Yu et al. (2013) for trees with
few leaves is in XP with respect to the number of leaves �,
but is not in FPT with respect to � or even (k,�).

7. CONCLUSIONS AND FUTURE WORK
We have designed polynomial-time algorithms for recog-

nizing profiles that are single-peaked on special classes of
trees, and demonstrated that such algorithms may be use-
ful for e�cient winner determination procedures under the
Chamberlin–Courant rule. We believe that results similar to
those of Section 6 can be obtained for other types of trees,
and, more broadly, for other computational problems that
are hard for general preferences, but easy for single-peaked
preferences. Moreover, it seems plausible that such results
can be extended to profiles that are “almost” single-peaked
on a tree, for distance measures such as the ones proposed
by Cornaz et al. (2012), Faliszewski et al. (2014) or Erdélyi
et al. (2013). On the other hand, our analysis suggests new
measures of closeness to single-peakedness (on the line) that
are specialised to profiles that are single-peaked on a tree,
namely, being single-peaked on a tree that is “almost” a line.
Such measures may turn out to be easier to compute and
exploit than the ones for arbitrary profiles, which tend to be
computationally demanding (Erdélyi et al. 2013; Bredereck
et al. 2013).

Conceptually, the notion of single-peakedness on a tree has
been criticised for having less explanatory power than that of
single-peakedness on a line. Indeed, profiles that are single-
peaked on a star and ones that are single-peaked on a line
have little in common, beyond the guaranteed existence of
Condorcet winners, and arguably, a designation that lumps
them together is of limited use. The tools developed in
our work permit us to identify coherent subdomains of this
broad domain, which, in turn, enables us to reason about
structurally similar profiles (ones that are single-peaked on
‘similar’ trees) and their shared properties. We hope that this
intuition will lead to new insights about real-life preference
domains.
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ABSTRACT
For one-sided matching problems, two widely studied mech-
anisms are the Random Serial Dictatorship (RSD) and the
Probabilistic Serial Rule (PS). Both mechanisms require only
that agents specify ordinal preferences and have a number
of desirable economic and computational properties. How-
ever, the induced outcomes of the mechanisms are often in-
comparable and thus there are challenges when it comes to
deciding which mechanism to adopt in practice. In this pa-
per, working in the space of general ordinal preferences, we
provide empirical results on the (in)comparability of RSD
and PS and analyze their respective economic properties.
We then instantiate utility functions for agents, consistent
with the ordinal preferences, with the goal of gaining in-
sights on the manipulability, e�ciency, and envyfreeness of
the mechanisms under di↵erent risk attitude models.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems; J.4 [Social and Behavioral Sciences]: Eco-
nomics

General Terms
Economics, Theory, Experimentation

Keywords
Mechanism Design, Matching, Random Assignment, Proba-
bilistic Serial, Random Serial Dictatorship

1. INTRODUCTION
The problem of assigning a number of indivisible objects

to a set of agents, in the absence of monetary transfers,
is fundamental in many multiagent resource allocation ap-
plications, and has been the center of attention amongst re-
searchers at the interface of artificial intelligence, economics,
and mechanism design. Assigning dormitory rooms or of-
fices to students, students to public schools, college courses
to students, organs and medical resources to patients, mem-
bers to subcommittees, etc. are some of the myriad examples
of one-sided matching problems [31, 5, 13, 25].

Appears at: 3rd Workshop on Exploring Beyond the Worst Case in
Computational Social Choice. Held as part of the 15th International Con-
ference on Autonomous Agents and Multiagent Systems. May 9th-10th,
2016. Singapore.

Two important (randomized) matching mechanisms that
only elicit ordinal preferences from agents are Random Se-

rial Dictatorship (RSD) [2] and Probabilistic Serial Rule

(PS) [11]. Both mechanisms have important economic prop-
erties and are practical to implement. The RSD mechanism
has strong truthful incentives but guarantees neither e�-
ciency nor envyfreeness. PS satisfies e�ciency and envyfree-
ness; however, it is susceptible to manipulation. Therefore,
there are subtle points to be considered when deciding which
mechanism to use. For example, given a particular prefer-
ence profile, the mechanisms often produce random assign-
ments which are simply incomparable and thus, without ad-
ditional knowledge of the underlying utility models of the
agents, it is di�cult to determine which is the “better” out-
come. Furthermore, properties like e�ciency, truthfulness,
and envyfreeness can depend on whether there is underlying
structure in the preferences, and even in general preference
models it is valuable to understand under what conditions
a mechanism is likely to be e�cient, truthful, or envyfree as
this can guide designers choices.

We study the comparability of PS and RSD when there
is only one copy of each object, and analyze the space of
all preference profiles for di↵erent combinations of agents
and objects. We show that despite the ine�ciency of RSD,
the fraction of random assignments at which PS stochasti-
cally dominates RSD vanishes, especially when the number
of agents is less than or equal to the available objects. We
then instantiate utility functions for agents to gain insights
on the manipulability, social welfare, and envyfreeness of the
two mechanisms under di↵erent risk attitudes.

Our main result is that under risk aversion, the social
welfare of RSD is as good as PS but RSD does create envy
among the agents (though the fraction of envious profiles
and total envy are small). Moreover, when the number of
agents and objects are equal, RSD assignments are less likely
to be dominated by PS and overall RSD assignments cre-
ate negligible envy among agents. We also show that PS
is highly susceptible to manipulation in almost all combi-
nations of agents and objects. The fraction of manipulable
profiles and the gain from manipulation rapidly increases,
particularly when agents become more risk averse.

2. MODEL
In this section, we describe the basic one-sided match-

ing problem and introduce the two mechanisms we study
in detail, Random Serial Dictatorship (RSD) [2] and Proba-
bilistic Serial Rule (PS) [11]. We then introduce a number of
properties and criteria used to evaluate these mechanisms.



2.1 One Sided Matching
A one-sided matching problem consists of a set of n agents,

N , and a set of m indivisible objects, M .1 Each agent i 2 N
has a private strict preference ordering, �i, over M where
a �i b indicates that agent i prefers to receive object a over
object b. We represent the preference ordering of agent i by
the ordered list of objects �i= a �i b �i c or �i= (abc),
for short. We let P denote the set of all complete and strict
preference orderings over M . A preference profile �2 Pn

specifies a preference ordering for each agent, and we use
the standard notation ��i= (�1, . . . ,�i�1,�i+1, . . . ,�n)
to denote preferences orderings of all agents except i and
thus �= (�i,��i).

The goal in a one-sided matching problem is to assign the
objects in M to the agents in N according to preference
profiles, under the constraint that no object can be assigned
to more than one agent. If m = n then this means that
each agent will receive exactly one object, however if m < n
then some agents will receive no object and if m > n then
some agents may receive multiple objects. An assignment is
represented as a matrix

A =

0

BBB@

A1

A2

...
An

1

CCCA
=

0

BBB@

A1,1 A1,2 . . . A1,m

A2,1 A2,2 . . . A2,m

...
...

. . .
...

An,1 An,2 . . . An,m

1

CCCA

where Ai,j 2 [0, 1] is the probability that agent i is assigned
object j. We let A denote the set of all feasible assign-
ments where an assignment A 2 A is feasible if and only if
8j 2 M ,

P
i2N Ai,j = 1. If A 2 A is such that Ai,j 2 {0, 1}

then we say that A is a deterministic assignment; otherwise,
A is a random assignment. Every random assignment can
be represented as a convex combination of deterministic as-
signments [37], and thus we view random assignments as a
probability distribution over a set of deterministic assign-
ments.

2.2 Matching Mechanisms
In general, a matching mechanism, M, is a mapping from

the set of preference profiles, Pn to the set of feasible as-
signments, A. That is, M : Pn 7! A. In this paper, we
focus our attention on two widely studied mechanisms for
one-side matching: Random Serial Dictatorship (RSD) [2]
and Probabilistic Serial Rule (PS) [10].
RSD relies on the concept of priority orderings over agents.

Such an ordering is an ordered list of agents where the first
agent gets to select its most preferred object from the set
of objects, the second agent then selects its most preferred
object from the set of remaining objects and so on, until no
objects remain.2 Given a preference profile �2 Pn, RSD
returns an assignment RSD(�) 2 A which is a uniform dis-
tribution over all deterministic assignments induced from all
possible priority orderings over the set of agents. RSD has

1This problem is sometimes called the assignment problem
or house allocation problem in the literature.
2For n < m, RSD requires a careful method for picking
sequence at each realized priority ordering based on an ar-
bitrary serial dictatorship quota mechanism, which directly
a↵ects the e�ciency and envy of the assignments [19, 12].
For simplicity, we use the variant of RSD based on a quasi-

dictatorial mechanism [29] where the first agent selects its
most preferred (m�n+1) objects, and the rest of the agents
choose one object each.

been widely adopted for fair and strategyproof assignment
for the school choice problem, course assignment, house al-
location, and room assignment [1, 35, 2, 3]

PS treats objects as a set of divisible goods of equal size
and simulates a simultaneous eating algorithm. Each agent
starts “eating” its most preferred object, all at the same
rate. Once an object is gone (eaten away) then the agent
starts eating its next preferred object among the remaining
objects. This process terminates when all objects have been
“eaten”. Given a preference profile �2 Pn, PS(�) 2 A is a
random assignment where Ai,j is the probability (fraction)
that object j is assigned to (or “eaten by”) agent i.

2.3 General Properties
In this section, we define key properties for matching mech-

anisms. In particular, we formally define e�ciency, strat-
egyproofness and envyfreeness for (randomized) matching
mechanisms under ordinal preferences. To evaluate the qual-
ity of a random assignment, we use first-order stochastic
dominance [18, 11]. Given a random assignment Ai, the
probability that agent i is assigned an object that is at least
as good as object ` is defined as follows

w(�i, `, Ai) =
X

j2M :j⌫i`

Ai,j (1)

We say an agent always prefers assignment Ai to Bi, if for
each object ` the probability of assigning an object at least
as good as ` under Ai is greater or equal that of Bi, and
strictly greater for some object.

Definition 1 (Stochastic Dominance). Given a pref-

erence ordering �i, random assignment Ai stochastically

dominates (sd) assignment Bi( 6= Ai) if

8` 2 M, w(�i, `, Ai) � w(�i, `, Bi) (2)

A matching mechanism is sd-e�cient if at all preference
profiles �2 Pn, for all agents i 2 N , the induced assignment
is not stochastically dominated by any other assignment.

Definition 2 (sd-Efficiency). A random assignment

is sd-e�cient if for all agents, it is not stochastically domi-

nated by any other random assignment.

An important desirable property in matching mechanisms
is strategyproofness, that is the mechanism is designed so
that no agent has incentive to misreport its preferences.

Definition 3 (sd-Strategyproofness). Mechanism M
is sd-strategyproof if at all preference profiles �2 Pn

, for all

agents i 2 N , and for any misreport �0
i2 Pn

, such that

A = M(�) and A0 = M(�0
i,��i), we have:

8` 2 M, w(�i, `, Ai) � w(�i, `, A
0
i) (3)

Sd-strategyproofness is a strict requirement. It implies
that under any utility model consistent with the prefer-
ence orderings, no agent can improve her expected utility
by misreporting. We say that a mechanism is weakly sd-

strategyproof if the inequality in Equation 3 is strict for
some ` 2 M , but does not hold for all objects. Clearly,
sd-strategyproofness implies weak sd-strategyproofness but
the converse does not hold.

An assignment is manipulable if it is not sd-strategyproof.
If there exists some agent who strictly benefits from the



n � m n < m

PS RSD PS RSD

sd-strategyproof weak 3 7 3
sd-e�ciency 3 7 3 7
sd-envyfree 3 weak 3 weak

Table 1: Properties of PS and RSD.

manipulation, (i.e. the mechanism is not even weakly sd-
strategyproof) then we say the assignment is sd-manipulable.

Finally, we are interested in whether mechanisms are fair
and use the notion of envyfreeness to this end. An assign-
ment is sd-envyfree if each agent strictly prefers her random
allocation to any other agent’s assignment.

Definition 4 (sd-Envyfreeness). Given agent i’s pref-
erence �i, assignment Ai is sd-envyfree if for all agents

8k 6= i 2 N ,

8` 2 M, w(�i, `, Ai) � w(�i, `, Ak) (4)

We say an assignment is weakly sd-envyfree if the inequality
in Equation 4 is strict for some ` 2 M , but does not hold for
all objects. A matching mechanism satisfies sd-envyfreeness
if at all preference profiles �2 Pn, it induces sd-envyfree
assignments for all agents.

2.4 Properties of RSD and PS
The theoretical properties of PS and RSD have been well

studied in the economics literature [11], and we summarize
the results in Table 1. Both mechanisms are ex post e�cient,
that is, their realized outcomes cannot be improved without
making at least one agent worse o↵. PS has been shown to
be both sd-envyfree and sd-e�cient. However, it is not even
weakly sd-strategyproof when n < m [22] and is only weakly
sd-strategyproof when n � m. On the other hand, RSD is
always sd-strategyproof, but it is only weakly sd-envyfree
and is not sd-e�cient. Example 1 illustrates the ine�ciency
of RSD.

Example 1. Suppose there are four agents N = {1, 2, 3, 4}
and four objects M = {a, b, c, d}. Consider the following

preference profile �= ((abcd), (abcd), (badc), (badc)). Ta-

ble 2 shows the outcomes for PS(�) and RSD(�). In this

example, all agents strictly prefer the assignment induced by

PS over the RSD assignment. Thus, RSD is ine�cient at

this preference profile.

a b c d

A1 1/2 0 1/2 0
A2 1/2 0 1/2 0
A3 0 1/2 0 1/2
A4 0 1/2 0 1/2

(a) Assignment under PS(�)

a b c d

A1 5/12 1/12 5/12 1/12
A2 5/12 1/12 5/12 1/12
A3 1/12 5/12 1/12 5/12
A4 1/12 5/12 1/12 5/12

(b) Assignment under RSD(�)

Table 2: Example showing the ine�ciency of RSD

3. INCOMPARABILITY OF RSD AND PS
We argue that the theoretical findings on RSD and PS

do not necessarily provide enough guidance to a market de-
signer trying to select the correct mechanism for a specific
setting. For example, while we know that PS is sd-e�cient
and RSD is not, this does not mean that PS always outper-
forms RSD.

a b c

A1 1/2 0 1/2
A2 1/2 1/4 1/4
A3 0 3/4 1/4

(a) Assignment under PS(�)

a b c

A1 1/2 0 1/2
A2 1/2 1/6 1/3
A3 0 5/6 1/6

(b) Assignment under RSD(�)

Table 3: Incomparability of RSD and PS

Example 2. Suppose there are three agents N = {1, 2, 3}
and three objects M = {a, b, c}. Consider the following pref-

erence profile �= ((acb), (abc), (bac)). Table 3 shows PS(�)
and RSD(�). Neither assignment dominates the other since

agent 1 is ambivalent between the two assignments while

agent 2 prefers PS(�) and agent 3 prefers RSD(�).

If we knew the utility functions of the agents, consistent
with their ordinal preferences, then we might be able to use
the notion of (utilitarian) social welfare to help determine
the better assignment.3 However, it is easy to construct
di↵erent utility functions for the agents in Example 2 where
both RSD and PS maximize social welfare.

Similarly, the envy of RSD and the manipulability of PS
both depend on the structure of preference profiles, and
thus, a compelling question, that justifies the practical im-
plications of deploying a matching mechanism, is to analyze
the space of preference profiles to find the likelihood of in-
e�cient, manipulable, or envious assignments under these
mechanisms.

4. GENERAL PREFERENCES
The theoretical properties of PS and RSD only provide

limited insight into their practical applications. In partic-
ular, when deciding which mechanism to use in di↵erent
settings, the incomparability of PS and RSD leaves us with
an ambiguous choice in terms of e�ciency, manipulability,
and envyfreeness. Thus, we examine the properties of RSD
and PS in the space of all possible preference profiles as
well as under lexicographic preferences. Lexicographic pref-
erences are present in various applications and have been
extensively studied in artificial intelligence and multiagent
systems as a means of assessing allocations based on ordinal
preferences [15, 32, 17]. Under lexicographic preferences, we
denote the e�ciency, strategyproofness, manipulablity, and
envyfreeness with ld- (lexicographically dominate) prefix.

The number of all possible preference profiles is super ex-
ponential (m!)n. For each combination of n agents and m
objects we performed a brute force coverage of all possible
preference profiles. Thus, for all subsequent figures each
data point shows the fraction of all possible preference pro-
files. For the cases of n = 10 and m 2 {9, 10}, we randomly
generated 1,000 instances by sampling from a uniform pref-
erence profile distribution. For each preference profile, we
ran both PS and RSD mechanisms and compared their out-
comes in terms of the stochastic dominance relation. Note
that not only is computing RSD probabilities #P-complete
(and thus intractable) [6, 33], but checking the desire prop-
erties such as envyfreeness, e�ciency, and manipulablity of
random allocations is shown to be NP-hard for general set-
tings [9, 8]. Thus, for larger settings even if we randomly

3Given utility functions for the agents, where ui(j) is the
utility agent i derives from being assigned object j, the (utili-
tarian) social welfare of an assignment A is

P
i

P
j Ai,jui(j).
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Figure 1: The fraction of preference profiles under which PS dominates RSD.
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Figure 2: Heatmaps illustrating the manipulablity of PS.

sample preference profiles it is not easy to verify the afore-
mentioned properties.

A preliminary look at our empirical results illustrates the
following: when m  2, n  3, PS coincides exactly with
RSD, which results in the best of the two mechanisms, i.e.,
both mechanisms are sd-e�cient, sd-strategyproof, and sd-
envyfree. Another interesting observation is that when m =
2, for all n PS is sd-strategyproof (although the PS assign-
ments are not necessarily equivalent to assignments induced
by RSD), RSD is sd-envyfree, and for most instances PS
stochastically dominates RSD, particularly when n � 4.

4.1 Efficiency
Our first finding 4 is that the fraction of preference profiles

at which RSD and PS induce equivalent random assignments
goes to 0 when n grows. There are two conclusions that
one can draw. First, this result confirms the theoretical
results of Manea on asymptotic ine�ciency of RSD [24], in
that, in most instances, the assignments induced by RSD are

4Periodically, we present results without a figure.

not equivalent to the PS assignments. Second, this result
suggests that the incomparability of outcomes is significant,
that is, the social welfare of the random outcomes is highly
dependent on the underlying utility models.

The fraction of preference profiles �2 Pn for which RSD
is stochastically dominated by PS at � converges to zero
as n

m ! 1. Figure 1a shows that when n grows beyond
n > 5, due to incomparability of RSD and PS with regard
to the stochastic dominance relation, the RSD assignments
are not stochastically dominated by sd-e�cient assignments
induced by PS.

We also see similar results when we restrict ourselves to
lexicographic preferences (Figure 1b). The fraction of pref-
erence profiles �2 Pn for which RSD is lexicographically
dominated by PS at � converges to zero as n

m ! 1.
For lexicographic preferences, we also observe that the

fraction of preference profiles for which PS assignments strictly
dominate RSD-induced allocations goes to 1 when the num-
ber of agents and objects diverge. The fraction of preference
profiles �2 Pn for which RSD is lexicographically domi-
nated by PS at � converges to 1 as |n�m| grows.



One immediate conclusion is that although RSD does not
guarantee either sd-e�ciency or ld-e�ciency, in most set-
tings when n

m ! 1 (and also n  m for sd-e�ciency), nei-
ther of the two mechanisms is preferred in terms of e�ciency.
Hence, one cannot simply rule out the RSD mechanism.

4.2 Manipulability of PS
One critical issue with deploying PS is that it does not

provide incentives for honest reporting of preferences. Al-
though for n � m PS is weakly sd-strategyproof [11] and
ld-strategyproof [34], when n < m PS no longer satisfies
these two properties.5 The real concern is that, in the ab-
sence of strategyproofness, PS allocations are only e�cient
(or envyfree) with respect to the reported preferences, which
in turn may not be truthful. Thus, we are interested in un-
derstanding the degree to which PS allocations are manipu-
lable.

Figure 2 shows that the fraction of manipulable profiles
goes to 1 as n or m grow. PS is almost 99% manipulable for
n > 5,m > 5. Another interesting observation is that, for
all n < m, the fraction of sd-manipulable preference pro-
files goes to 1 as m � n grows (Figure 2b). These results
imply that when agents are entitled to receive more than a
single object, agents can strictly benefit from misreporting
their preferences. The manipulability of PS under lexico-
graphic preferences has a similar trend and the fraction of
ld-manipulable preference profiles converges to 1 even more
rapidly.

4.3 Envy in RSD
We measured the fraction of agents that are weakly sd-

envious of at least one another agent when running RSD.
Our results show that the percentage of agents that are
weakly envious increases with the number of agents. More-
over, fixing any n > 3, the percentage of agents that are
(weakly) envious grows with the number of objects; how-
ever, there is a sudden drop in the percentage of envious
agents when there are equal number of agents and objects.

5. UTILITY MODELS
Given a utility model consistent with an agent’s prefer-

ence ordering, we can find the agent’s expected utility for a
random assignment. Let ui denote agent i’s Von Neumann-
Morgenstern (VNM) utility model consistent with its prefer-
ence ordering �i. That is, ui(a) > ui(b) if and only if a �i b.
Then, agent i’s expected utility for random assignment Ai

is E(ui|Ai) =
P

j2M Ai,jui(j).
We say that agent i (strictly) prefers assignment Ai to

Bi if and only if E(ui|Ai) > E(ui|Bi). A mechanism is
strategyproof if there exists no agent that can improve its
expected utility by misreporting its preference ordering.

Definition 5 (Strategyproof). Mechanism M is strat-

egyproof if for all agents i 2 N , and for any misreport

�0
i2 Pn

, such that A = M(�) and A0 = M(�0
i,��i), given

a utility model ui consistent with �i, we have E(ui|Ai) �
E(ui|A0

i).

5A recent experimental study on the incentive properties of
PS shows that human subjects are less likely to manipulate
the mechanism when misreporting is a Nash equilibrium.
However, subjects’ tendency for misreporting is still signifi-
cant even when it does not improve their allocations [20].

A matching mechanism is envyfree if for all preference
profiles it prescribes an envyfree assignment.

Definition 6 (Envyfreeness). Assignment A is en-

vyfree if for all i, k 2 N , given utility model ui consistent

with �i, we have E(ui|Ai) � E(ui|Ak).

A random assignment A is sd-e�cient if and only if there
exists a profile of utility values consistent with � such that A
maximizes the social welfare ex ante [11, 26]. This existence
result does not shed light on the social welfare when com-
paring two random assignments, since an assignment can be
sd-e�cient but may not have desirable ex ante social welfare.
Given utility functions for the agents, the (utilitarian) social
welfare of an assignment A is

P
i E(ui|Ai). Thus, given a

profile of utilities we investigate the (ex ante) social welfare
of the assignments under PS and RSD.

5.1 Instantiating Utility Functions
To deepen our understanding as to the performance of the

two mechanisms, we investigate di↵erent utility models. In
particular we look at the performance of the mechanisms
when the agents are all risk neutral (i.e. have linear utility
functions), when agents are risk seeking and when agents
are risk averse.

Our first utility model is the well-studied linear utility
model, and we use a variant based on the Borda rule from
the social choice literature. Given an agent i’s preference
ordering �i, we let r(�i, j) denote the rank of object j.
For example, given preference ordering a �i b �i c then
r(�i, a) = 1, r(�i, b) = 2 and r(�i, c) = 3. The utility
function for agent i, given object j is ui(j) = m� r(�i, j).

We use an exponential utility model to capture risk at-
titudes beyond risk-neutrality. An exponential utility has
been shown to provide an appropriate translation for indi-
viduals’ utility models and provides a constant risk aversion
rate [4]. In particular,

ui(j) =

(
(1� e�↵(m�r(�i,j)))/↵, ↵ 6= 0

m� r(�i, j), ↵ = 0
(5)

The parameter ↵ represents the agent’s risk attitude. If
↵ > 0 then the agent is risk averse, while if ↵ < 0 then the
agent is risk seeking. When ↵ = 0 then the agent is risk
neutral and we have a linear utility model. The value |↵|
represents the intensity of the attitude. That is, given two
agents with ↵1 < ↵2 < 0, we say that agent 1 is more risk
averse than agent 2. Similarly if ↵1 > ↵2 > 0 then agent 1
is more risk seeking than agent 2.

6. RESULTS
For our experiments, we vary three parameters: the num-

ber of agents n, the number of objects m, and the risk at-
titude factor ↵. Each data point in the graphs shows the
average over all possible preference profiles. We study the
same settings as in Section 4 when n � m and n < m. For
each utility function, we look at homogeneous populations
of agents where agents have the same risk attitudes.

To compare the social welfare, we investigate the per-
centage change (or improvement) in social welfare of PS
compared to RSD under various utility models. That is,P

i E(ui|PS(�))�
P

i E(ui|RSD(�))P
i E(ui|RSD(�)) . To measure the manipula-

bility of PS, we are interested in answering two key ques-
tions: i) In what fraction of profiles PS is manipulable by
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Figure 3: The percentage change in social welfare. The negative values show that RSD outperforms PS.

at least one agent? and ii) If manipulation is possible,
what is the average percentage of maximum gain, that is

maxi{ E(ui|PS(�0
i,��i))�E(ui|PS(�))

E(ui|PS(�)) }? To study the envy un-

der the RSD mechanism, we consider two measures: i) the
fraction of envious agents, and ii) the total envy felt by all
agents.

6.1 Linear Utility Model
We first looked at how RSD and PS perform under the as-

sumption that the utility models are linear. In most cases,
the social welfare under PS increases compared to RSD;
however, the percentage change from PS to RSD becomes
smaller when n = m (less than 0.015 overall improvement in
all cases). Interestingly, under RSD the fraction of envious
agents is approximately 0 when n � m. With regards to
strategyproofness, PS is manipulable in most combinations
of n and m and the fraction of manipulable profiles and the
utility gain from manipulation increases as the number of
objects compared to agents increases.

6.2 Risk Seeking
Figure 3 presents our results in terms of percentage change

in social welfare. Positive numbers show the percentage of
improvement in social welfare. Negative values represent

those cases where RSD has increased social welfare com-
pared to PS.

Social welfare: Fixing ↵ < 0, for n � m when n
m grows

PS improves the social welfare compared to RSD in most
cases and the percentage of improvement also increases. A
similar trend holds when varying risk intensity ↵ for fixed n
and m where n 6= m. For n < m, when m

n grows the fraction
of profiles at which PS has higher social welfare compared
to RSD rapidly increases and the percentage change is also
noticeably larger, quickly getting close to 90% improvement
(Fig. 3a and 3c). This social welfare gap between PS and
RSD grows as the risk intensity |↵| increases. Surprisingly,
this trend changes for equal number of agents and objects
n = m: the more risk-seeking agents are (larger |↵|), RSD
becomes more desirable than PS, and in fact, RSD improves
the social welfare in more instances.

Envy: For n � m, the fraction of envious agents un-
der all profiles vanishes and RSD becomes envyfree. This
is more evident when agents are more risk-seeking. Intu-
itively, these observations confirm the theoretical findings
about the envyfreeness of RSD under lexicographic prefer-
ences [19] since one can consider lexicographic preferences
as risk-seeking preferences where an object in a higher rank-
ing is infinitely preferred to all objects that are ranked less
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Figure 4: The fraction of manipulable instances under PS.

preferably. When n < m, our quasi-dictatorial extension of
RSD creates some envy among the agents, but this envy also
starts to fade out when the risk intensity |↵| increases.

Manipulability: Figure 4 shows the manipulability of
the PS assignments when agents are risk seeking. We see
that the possibility of manipulation (and any gain) decreases
as the risk intensity increases. When n � m the fraction of
manipulable profiles goes to 0 the more risk seeking agents
become. However, when n < m even though the the fraction
of manipulable profiles (and manipulation gain) decreases,
the fraction of manipulable profiles goes to 1 as m

n grows.

6.3 Risk Aversion
Social welfare: Figures 3b and 3d show that fixing risk

factor ↵ > 0, when n
m grows PS assignments are superior to

that of RSD in more instances and the percentage change in
social welfare increases. Fixing risk factor ↵ > 0 and when
m
n grows, RSD is more likely to have the same social welfare
as PS, and in fact in some instances the social welfare under
RSD is better than the social welfare under PS. Fixing m
and n, when the risk intensity ↵ increases RSD is more likely
to have the same social welfare as PS, that is, the welfare gap
between PS and RSD closes when agents are more risk averse
(↵ increases). This result is insightful and states that under

risk aversion the random allocations prescribed by RSD are
either as good as PS or in some cases even are superior to
the allocations prescribed by PS. Figure 5 illustrates the
percentage change in social welfare based on the di↵erence
between available objects and agents (m�n) for risk seeking,
linear, and risk averse utilities with di↵erent risk intensities.

Envy: When n � m, the fraction of envious agents and
total envy grows as n

m ! 1. Increasing the risk intensity
(|↵|), the fraction of envious agents increases; however, the
total envy among the agents remains considerably low. For
n < m, the fraction of envious agents and total envy grows
as risk intensity increases. Lastly, we noticed that in all
instance where RSD creates envy among the agents, around
25% of agents bear more than 50% of envy. That is, few
agents feel extremely envious while all other agents are either
envyfree or only feel a minimal amount of envy.

Manipulability: Figures 4b and 4d illustrate the manip-
ulability of the PS assignments when agents have risk averse
preferences. The fraction of manipulable profiles rapidly
goes to 1 as m

n grows. Similarly, as agents become more
risk averse (↵ increases) the fraction of manipulable profiles
goes to 1 and the manipulation gain increases.



7. RELATED LITERATURE
Assignment problems with ordinal preferences have at-

tracted interest from many researchers. Svensson showed
that serial dictatorship is the only deterministic mechanism
that is strategyproof, nonbossy, and neutral [36]. Random
Serial Dictatorship (RSD) (uniform randomization over all
serial dictatorship assignments) satisfies strategyproofness,
proportionality, and ex post e�ciency [2]. Bogomolnaia and
Moulin noted the ine�ciency of RSD from the ex ante per-
spective, and characterized the matching mechanisms based
on first-order stochastic dominance [11]. They proposed the
probabilistic serial mechanism as an e�cient and envyfree
mechanism with regards to ordinal preferences. While PS
is not strategyproof, it satisfies weak strategyproofness for
problems with equal number of agents and objects. How-
ever, PS is strictly manipulable (not weakly strategyproof)
when there are more objects than agents [21]. Kojima and
Manea, showed that in large assignment problems with suf-
ficiently many copies of each object, truth-telling is a weakly
dominant strategy in PS [22]. In fact PS and RSD mech-
anisms become equivalent [14], that is, the ine�ciency of
RSD and manipulability of PS vanishes when the number of
copies of each object approaches infinity.

The practical implications of deploying RSD and PS have
been the center of attention in many one-sided matching
problems [1, 27]. In the school choice setting with multi-
capacity alternatives, Pathak observed that many students
obtained a more desirable random assignment through PS in
public schools of New York City [30]; however, the e�ciency
di↵erence was quite small. These equivalence results and
their extensions to all random mechanisms [23], do not hold
when the quantities of each object is limited to one.

Other interesting aspects of PS and RSD such as compu-
tational complexity and best-responses strategies have also
been explored [16, 8, 7]. In this vein, Aziz et al. proved
the existence of pure Nash equilibria, but showed that com-
puting an equilibrium is NP-hard [7]. Nevertheless, Mennle
et al. [28] showed that agents can easily find near-optimal
strategies by simple local and greedy search. In the absence
of truthful incentives, the outcome of PS is no longer guar-
anteed to be e�cient or envyfree with respect to agents’
true underlying preferences, and this ine�ciency may result
in outcomes that are worse than RSD, especially in ‘small’
markets [16].

8. DISCUSSION
We studied the space of general preferences and provided

empirical results on the (in)comparability of RSD and PS. It
is worth mentioning that at preference profiles where PS and
RSD induce identical assignments, RSD is sd-e�cient, sd-
envyfree, and sd-strategyproof. However, PS is still highly
manipulable. We investigated various utility models accord-
ing to di↵erent risk attitudes. Our main results are:

• In terms of e�ciency, the fraction of preference profiles
�2 Pn for which PS stochastically (or lexicographically)
dominates RSD converges to zero as n

m ! 1. When in-
stantiating the preferences with actual utility functions,
PS allocations are only slightly better than RSD alloca-
tions in terms of social welfare when varying n and m,
particularly under risk averse utilities. In fact, in some
cases RSD allocations are superior in terms of social wel-
fare (see Figure 5).
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Figure 5: The percentage change in social welfare between
RSD and PS for ↵ 2 (�2,�1,�0.5, 0, 0.5, 1, 2) and di↵erent
combinations of m� n. Positive ↵ indicates risk averse and
negative ↵ risk taking profiles. Linear utility is indicated by
↵ = 0. As agents become more risk averse the social welfare
gap between RSD and PS closes.

• PS is almost 99% manipulable when n  m and the frac-
tion of sd- and ld- manipulable profiles rapidly goes to 1
as m

n grows. When instantiating the preferences with util-
ity functions, the manipulability of PS increases as agents
become more risk averse. Moreover, an agent’s utility gain
from manipulation also grows when the risk intensity in-
creases.

• For risk seeking utilities, when n � m the fraction of en-
vious agents under all profiles vanishes and RSD becomes
envyfree. For risk averse utilities, the fraction of envious
agents increases as agents become more risk averse. How-
ever, the total amount of envy just slightly grows, and
surprisingly, only few agents feel extremely envious while
all other agents are either envyfree or only feel a minimal
amount of envy.

Our work in this paper can be used to help guide design-
ers of multiagent systems who need to solve allocation prob-
lems. If a designer strongly requires sd-e�ciency then the
theoretical results of PS indicate that it is better than RSD.
However, our results show that PS is highly prone to manip-
ulation for various combinations of agents and objects. This
manipulation and the possible gain from manipulation be-
come more severe particularly when agents are risk averse,
and designers need to take this into consideration. On the
other hand, while RSD does not theoretically guarantee sd-
e�ciency, our results show that it tends to do quite well –
sometimes even outperforming PS in terms of social welfare.
RSD also has the added advantage of being sd-strategyproof
and thus is not prone to the manipulation problems of PS.

An interesting future direction is to study egalitarian so-
cial welfare of the matching mechanisms in single and multi
unit assignment problems as well as in the full preference
domain. Another open direction is to provide a parametric
analysis of the matching mechanisms according to the risk
aversion factor.
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[2] A. Abdulkadiroğlu and T. Sönmez. Random serial
dictatorship and the core from random endowments in
house allocation problems. Econometrica, 66(3):689–701,
1998.
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